
Cryptography Documentation
Release 43.0.0.dev1

Individual Contributors

Apr 27, 2024

THE RECIPES LAYER

1 Installation 3

2 Layout 5
2.1 Fernet (symmetric encryption) . 5
2.2 X.509 . 9
2.3 Primitives . 82
2.4 Exceptions . 207
2.5 Random number generation . 207
2.6 Decrepit cryptography . 208
2.7 Installation . 210
2.8 Changelog . 214
2.9 Frequently asked questions . 247
2.10 Development . 250
2.11 Use of OpenSSL . 314
2.12 Security . 315
2.13 Known security limitations . 317
2.14 API stability . 317
2.15 Doing a release . 319
2.16 Community . 321
2.17 Glossary . 321

Python Module Index 323

Index 325

i

ii

Cryptography Documentation, Release 43.0.0.dev1

cryptography includes both high level recipes and low level interfaces to common cryptographic algorithms such
as symmetric ciphers, message digests, and key derivation functions. For example, to encrypt something with
cryptography’s high level symmetric encryption recipe:

>>> from cryptography.fernet import Fernet
>>> # Put this somewhere safe!
>>> key = Fernet.generate_key()
>>> f = Fernet(key)
>>> token = f.encrypt(b"A really secret message. Not for prying eyes.")
>>> token
b'...'
>>> f.decrypt(token)
b'A really secret message. Not for prying eyes.'

If you are interested in learning more about the field of cryptography, we recommend Crypto 101, by Laurens Van
Houtven and The Cryptopals Crypto Challenges.

THE RECIPES LAYER 1

https://www.crypto101.io/
https://www.crypto101.io/
https://cryptopals.com/

Cryptography Documentation, Release 43.0.0.dev1

2 THE RECIPES LAYER

CHAPTER

ONE

INSTALLATION

You can install cryptography with pip:

$ pip install cryptography

See Installation for more information.

3

Cryptography Documentation, Release 43.0.0.dev1

4 Chapter 1. Installation

CHAPTER

TWO

LAYOUT

cryptography is broadly divided into two levels. One with safe cryptographic recipes that require little to no config-
uration choices. These are safe and easy to use and don’t require developers to make many decisions.

The other level is low-level cryptographic primitives. These are often dangerous and can be used incorrectly. They
require making decisions and having an in-depth knowledge of the cryptographic concepts at work. Because of the
potential danger in working at this level, this is referred to as the “hazardous materials” or “hazmat” layer. These live
in the cryptography.hazmat package, and their documentation will always contain an admonition at the top.

We recommend using the recipes layer whenever possible, and falling back to the hazmat layer only when necessary.

2.1 Fernet (symmetric encryption)

Fernet guarantees that a message encrypted using it cannot be manipulated or read without the key. Fernet is an
implementation of symmetric (also known as “secret key”) authenticated cryptography. Fernet also has support for
implementing key rotation via MultiFernet.

class cryptography.fernet.Fernet(key)
This class provides both encryption and decryption facilities.

>>> from cryptography.fernet import Fernet
>>> key = Fernet.generate_key()
>>> f = Fernet(key)
>>> token = f.encrypt(b"my deep dark secret")
>>> token
b'...'
>>> f.decrypt(token)
b'my deep dark secret'

Parameters
key (bytes or str) – A URL-safe base64-encoded 32-byte key. This must be kept secret.
Anyone with this key is able to create and read messages.

classmethod generate_key()

Generates a fresh fernet key. Keep this some place safe! If you lose it you’ll no longer be able to decrypt
messages; if anyone else gains access to it, they’ll be able to decrypt all of your messages, and they’ll also
be able forge arbitrary messages that will be authenticated and decrypted.

encrypt(data)
Encrypts data passed. The result of this encryption is known as a “Fernet token” and has strong privacy
and authenticity guarantees.

5

https://github.com/fernet/spec/
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Cryptography Documentation, Release 43.0.0.dev1

Parameters
data (bytes) – The message you would like to encrypt.

Returns bytes
A secure message that cannot be read or altered without the key. It is URL-safe base64-
encoded. This is referred to as a “Fernet token”.

Raises
TypeError – This exception is raised if data is not bytes.

Note: The encrypted message contains the current time when it was generated in plaintext, the time a
message was created will therefore be visible to a possible attacker.

encrypt_at_time(data, current_time)
Added in version 3.0.

Encrypts data passed using explicitly passed current time. See encrypt() for the documentation of the
data parameter, the return type and the exceptions raised.

The motivation behind this method is for the client code to be able to test token expiration. Since this
method can be used in an insecure manner one should make sure the correct time (int(time.time()))
is passed as current_time outside testing.

Parameters
current_time (int) – The current time.

Note: Similarly to encrypt() the encrypted message contains the timestamp in plaintext, in this case the
timestamp is the value of the current_time parameter.

decrypt(token, ttl=None)
Decrypts a Fernet token. If successfully decrypted you will receive the original plaintext as the result,
otherwise an exception will be raised. It is safe to use this data immediately as Fernet verifies that the data
has not been tampered with prior to returning it.

Parameters

• token (bytes or str) – The Fernet token. This is the result of calling encrypt().

• ttl (int) – Optionally, the number of seconds old a message may be for it to be valid. If
the message is older than ttl seconds (from the time it was originally created) an exception
will be raised. If ttl is not provided (or is None), the age of the message is not considered.

Returns bytes
The original plaintext.

Raises

• cryptography.fernet.InvalidToken – If the token is in any way invalid, this excep-
tion is raised. A token may be invalid for a number of reasons: it is older than the ttl, it
is malformed, or it does not have a valid signature.

• TypeError – This exception is raised if token is not bytes or str.

decrypt_at_time(token, ttl, current_time)
Added in version 3.0.

Decrypts a token using explicitly passed current time. See decrypt() for the documentation of the token
and ttl parameters (ttl is required here), the return type and the exceptions raised.

6 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

The motivation behind this method is for the client code to be able to test token expiration. Since this
method can be used in an insecure manner one should make sure the correct time (int(time.time()))
is passed as current_time outside testing.

Parameters
current_time (int) – The current time.

extract_timestamp(token)
Added in version 2.3.

Returns the timestamp for the token. The caller can then decide if the token is about to expire and, for
example, issue a new token.

Parameters
token (bytes or str) – The Fernet token. This is the result of calling encrypt().

Returns int
The Unix timestamp of the token.

Raises

• cryptography.fernet.InvalidToken – If the token’s signature is invalid this excep-
tion is raised.

• TypeError – This exception is raised if token is not bytes or str.

class cryptography.fernet.MultiFernet(fernets)
Added in version 0.7.

This class implements key rotation for Fernet. It takes a list of Fernet instances and implements the same
API with the exception of one additional method: MultiFernet.rotate():

>>> from cryptography.fernet import Fernet, MultiFernet
>>> key1 = Fernet(Fernet.generate_key())
>>> key2 = Fernet(Fernet.generate_key())
>>> f = MultiFernet([key1, key2])
>>> token = f.encrypt(b"Secret message!")
>>> token
b'...'
>>> f.decrypt(token)
b'Secret message!'

MultiFernet performs all encryption options using the first key in the list provided. MultiFernet attempts to
decrypt tokens with each key in turn. A cryptography.fernet.InvalidToken exception is raised if the
correct key is not found in the list provided.

Key rotation makes it easy to replace old keys. You can add your new key at the front of the list to start encrypting
new messages, and remove old keys as they are no longer needed.

Token rotation as offered by MultiFernet.rotate() is a best practice and manner of cryptographic hygiene
designed to limit damage in the event of an undetected event and to increase the difficulty of attacks. For example,
if an employee who had access to your company’s fernet keys leaves, you’ll want to generate new fernet key, rotate
all of the tokens currently deployed using that new key, and then retire the old fernet key(s) to which the employee
had access.

rotate(msg)
Added in version 2.2.

Rotates a token by re-encrypting it under the MultiFernet instance’s primary key. This preserves the
timestamp that was originally saved with the token. If a token has successfully been rotated then the rotated
token will be returned. If rotation fails this will raise an exception.

2.1. Fernet (symmetric encryption) 7

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

>>> from cryptography.fernet import Fernet, MultiFernet
>>> key1 = Fernet(Fernet.generate_key())
>>> key2 = Fernet(Fernet.generate_key())
>>> f = MultiFernet([key1, key2])
>>> token = f.encrypt(b"Secret message!")
>>> token
b'...'
>>> f.decrypt(token)
b'Secret message!'
>>> key3 = Fernet(Fernet.generate_key())
>>> f2 = MultiFernet([key3, key1, key2])
>>> rotated = f2.rotate(token)
>>> f2.decrypt(rotated)
b'Secret message!'

Parameters
msg (bytes or str) – The token to re-encrypt.

Returns bytes
A secure message that cannot be read or altered without the key. This is URL-safe base64-
encoded. This is referred to as a “Fernet token”.

Raises

• cryptography.fernet.InvalidToken – If a token is in any way invalid this exception
is raised.

• TypeError – This exception is raised if the msg is not bytes or str.

class cryptography.fernet.InvalidToken

See Fernet.decrypt() for more information.

2.1.1 Using passwords with Fernet

It is possible to use passwords with Fernet. To do this, you need to run the password through a key derivation function
such as PBKDF2HMAC, bcrypt or Scrypt.

>>> import base64
>>> import os
>>> from cryptography.fernet import Fernet
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
>>> password = b"password"
>>> salt = os.urandom(16)
>>> kdf = PBKDF2HMAC(
... algorithm=hashes.SHA256(),
... length=32,
... salt=salt,
... iterations=480000,
...)
>>> key = base64.urlsafe_b64encode(kdf.derive(password))
>>> f = Fernet(key)
>>> token = f.encrypt(b"Secret message!")

(continues on next page)

8 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> token
b'...'
>>> f.decrypt(token)
b'Secret message!'

In this scheme, the salt has to be stored in a retrievable location in order to derive the same key from the password in
the future.

The iteration count used should be adjusted to be as high as your server can tolerate. A good default is at least 480,000
iterations, which is what Django recommends as of December 2022.

2.1.2 Implementation

Fernet is built on top of a number of standard cryptographic primitives. Specifically it uses:

• AES in CBC mode with a 128-bit key for encryption; using PKCS7 padding.

• HMAC using SHA256 for authentication.

• Initialization vectors are generated using os.urandom().

For complete details consult the specification.

2.1.3 Limitations

Fernet is ideal for encrypting data that easily fits in memory. As a design feature it does not expose unauthenticated
bytes. This means that the complete message contents must be available in memory, making Fernet generally unsuitable
for very large files at this time.

2.2 X.509

X.509 is an ITU-T standard for a public key infrastructure. X.509v3 is defined in RFC 5280 (which obsoletes RFC
2459 and RFC 3280). X.509 certificates are commonly used in protocols like TLS.

2.2.1 Tutorial

X.509 certificates are used to authenticate clients and servers. The most common use case is for web servers using
HTTPS.

Creating a Certificate Signing Request (CSR)

When obtaining a certificate from a certificate authority (CA), the usual flow is:

1. You generate a private/public key pair.

2. You create a request for a certificate, which is signed by your key (to prove that you own that key).

3. You give your CSR to a CA (but not the private key).

4. The CA validates that you own the resource (e.g. domain) you want a certificate for.

5. The CA gives you a certificate, signed by them, which identifies your public key, and the resource you are
authenticated for.

2.2. X.509 9

https://github.com/django/django/blob/main/django/contrib/auth/hashers.py
https://github.com/fernet/spec/blob/master/Spec.md
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc2459.html
https://datatracker.ietf.org/doc/html/rfc2459.html
https://datatracker.ietf.org/doc/html/rfc3280.html
https://en.wikipedia.org/wiki/Transport_Layer_Security

Cryptography Documentation, Release 43.0.0.dev1

6. You configure your server to use that certificate, combined with your private key, to server traffic.

If you want to obtain a certificate from a typical commercial CA, here’s how. First, you’ll need to generate a private
key, we’ll generate an RSA key (these are the most common types of keys on the web right now):

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> # Generate our key
>>> key = rsa.generate_private_key(
... public_exponent=65537,
... key_size=2048,
...)
>>> # Write our key to disk for safe keeping
>>> with open("path/to/store/key.pem", "wb") as f:
... f.write(key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.TraditionalOpenSSL,
... encryption_algorithm=serialization.BestAvailableEncryption(b"passphrase"),
...))

If you’ve already generated a key you can load it with load_pem_private_key().

Next we need to generate a certificate signing request. A typical CSR contains a few details:

• Information about our public key (including a signature of the entire body).

• Information about who we are.

• Information about what domains this certificate is for.

>>> from cryptography import x509
>>> from cryptography.x509.oid import NameOID
>>> from cryptography.hazmat.primitives import hashes
>>> # Generate a CSR
>>> csr = x509.CertificateSigningRequestBuilder().subject_name(x509.Name([
... # Provide various details about who we are.
... x509.NameAttribute(NameOID.COUNTRY_NAME, "US"),
... x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, "California"),
... x509.NameAttribute(NameOID.LOCALITY_NAME, "San Francisco"),
... x509.NameAttribute(NameOID.ORGANIZATION_NAME, "My Company"),
... x509.NameAttribute(NameOID.COMMON_NAME, "mysite.com"),
...])).add_extension(
... x509.SubjectAlternativeName([
... # Describe what sites we want this certificate for.
... x509.DNSName("mysite.com"),
... x509.DNSName("www.mysite.com"),
... x509.DNSName("subdomain.mysite.com"),
...]),
... critical=False,
... # Sign the CSR with our private key.
...).sign(key, hashes.SHA256())
>>> # Write our CSR out to disk.
>>> with open("path/to/csr.pem", "wb") as f:
... f.write(csr.public_bytes(serialization.Encoding.PEM))

Now we can give our CSR to a CA, who will give a certificate to us in return.

10 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Creating a self-signed certificate

While most of the time you want a certificate that has been signed by someone else (i.e. a certificate authority), so that
trust is established, sometimes you want to create a self-signed certificate. Self-signed certificates are not issued by a
certificate authority, but instead they are signed by the private key corresponding to the public key they embed.

This means that other people don’t trust these certificates, but it also means they can be issued very easily. In general
the only use case for a self-signed certificate is local testing, where you don’t need anyone else to trust your certificate.

Like generating a CSR, we start with creating a new private key:

>>> # Generate our key
>>> key = rsa.generate_private_key(
... public_exponent=65537,
... key_size=2048,
...)
>>> # Write our key to disk for safe keeping
>>> with open("path/to/store/key.pem", "wb") as f:
... f.write(key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.TraditionalOpenSSL,
... encryption_algorithm=serialization.BestAvailableEncryption(b"passphrase"),
...))

Then we generate the certificate itself:

>>> # Various details about who we are. For a self-signed certificate the
>>> # subject and issuer are always the same.
>>> subject = issuer = x509.Name([
... x509.NameAttribute(NameOID.COUNTRY_NAME, "US"),
... x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, "California"),
... x509.NameAttribute(NameOID.LOCALITY_NAME, "San Francisco"),
... x509.NameAttribute(NameOID.ORGANIZATION_NAME, "My Company"),
... x509.NameAttribute(NameOID.COMMON_NAME, "mysite.com"),
...])
>>> cert = x509.CertificateBuilder().subject_name(
... subject
...).issuer_name(
... issuer
...).public_key(
... key.public_key()
...).serial_number(
... x509.random_serial_number()
...).not_valid_before(
... datetime.datetime.now(datetime.timezone.utc)
...).not_valid_after(
... # Our certificate will be valid for 10 days
... datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(days=10)
...).add_extension(
... x509.SubjectAlternativeName([x509.DNSName("localhost")]),
... critical=False,
... # Sign our certificate with our private key
...).sign(key, hashes.SHA256())
>>> # Write our certificate out to disk.

(continues on next page)

2.2. X.509 11

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> with open("path/to/certificate.pem", "wb") as f:
... f.write(cert.public_bytes(serialization.Encoding.PEM))

And now we have a private key and certificate that can be used for local testing.

Determining Certificate or Certificate Signing Request Key Type

Certificates and certificate signing requests can be issued with multiple key types. You can determine what the key
type is by using isinstance checks:

>>> public_key = cert.public_key()
>>> if isinstance(public_key, rsa.RSAPublicKey):
... # Do something RSA specific
... elif isinstance(public_key, ec.EllipticCurvePublicKey):
... # Do something EC specific
... else:
... # Remember to handle this case

2.2.2 Certificate Transparency

Certificate Transparency is a set of protocols specified in RFC 6962 which allow X.509 certificates to be sent to
append-only logs and have small cryptographic proofs that a certificate has been publicly logged. This allows for
external auditing of the certificates that a certificate authority has issued.

class cryptography.x509.certificate_transparency.SignedCertificateTimestamp

Added in version 2.0.

SignedCertificateTimestamps (SCTs) are small cryptographically signed assertions that the specified certificate
has been submitted to a Certificate Transparency Log, and that it will be part of the public log within some time
period, this is called the “maximum merge delay” (MMD) and each log specifies its own.

version

Type
Version

The SCT version as an enumeration. Currently only one version has been specified.

log_id

Type
bytes

An opaque identifier, indicating which log this SCT is from. This is the SHA256 hash of the log’s public
key.

timestamp

Type
datetime.datetime

A naïve datetime representing the time in UTC at which the log asserts the certificate had been submitted
to it.

12 Chapter 2. Layout

https://certificate.transparency.dev/
https://datatracker.ietf.org/doc/html/rfc6962.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

entry_type

Type
LogEntryType

The type of submission to the log that this SCT is for. Log submissions can either be certificates themselves
or “pre-certificates” which indicate a binding-intent to issue a certificate for the same data, with SCTs
embedded in it.

signature_hash_algorithm

Added in version 38.0.0.

Type
HashAlgorithm

The hashing algorithm used by this SCT’s signature.

signature_algorithm

Added in version 38.0.0.

Type
SignatureAlgorithm

The signing algorithm used by this SCT’s signature.

signature

Added in version 38.0.0.

Type
bytes

The raw bytes of the signatures embedded in the SCT.

extension_bytes

Added in version 38.0.0.

Type
bytes

Any raw extension bytes.

class cryptography.x509.certificate_transparency.Version

Added in version 2.0.

An enumeration for SignedCertificateTimestamp versions.

v1

For version 1 SignedCertificateTimestamps.

class cryptography.x509.certificate_transparency.LogEntryType

Added in version 2.0.

An enumeration for SignedCertificateTimestamp log entry types.

X509_CERTIFICATE

For SCTs corresponding to X.509 certificates.

PRE_CERTIFICATE

For SCTs corresponding to pre-certificates.

2.2. X.509 13

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.x509.certificate_transparency.SignatureAlgorithm

Added in version 38.0.0.

An enumeration for SignedCertificateTimestamp signature algorithms.

These are exactly the same as SignatureAlgorithm in RFC 5246 (TLS 1.2).

ANONYMOUS

RSA

DSA

ECDSA

2.2.3 OCSP

OCSP (Online Certificate Status Protocol) is a method of checking the revocation status of certificates. It is specified
in RFC 6960, as well as other obsoleted RFCs.

Loading Requests

cryptography.x509.ocsp.load_der_ocsp_request(data)
Added in version 2.4.

Deserialize an OCSP request from DER encoded data.

Parameters
data (bytes) – The DER encoded OCSP request data.

Returns
An instance of OCSPRequest.

>>> from cryptography.x509 import ocsp
>>> ocsp_req = ocsp.load_der_ocsp_request(der_ocsp_req)
>>> print(ocsp_req.serial_number)
872625873161273451176241581705670534707360122361

Creating Requests

class cryptography.x509.ocsp.OCSPRequestBuilder

Added in version 2.4.

This class is used to create OCSPRequest objects.

add_certificate(cert, issuer, algorithm)

Adds a request using a certificate, issuer certificate, and hash algorithm. You can call this method or
add_certificate_by_hash only once.

Parameters

• cert – The Certificate whose validity is being checked.

• issuer – The issuer Certificate of the certificate that is being checked.

• algorithm – A HashAlgorithm instance. For OCSP only SHA1, SHA224, SHA256,
SHA384, and SHA512 are allowed.

14 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc5246.html
https://datatracker.ietf.org/doc/html/rfc6960.html
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

add_certificate_by_hash(issuer_name_hash, issuer_key_hash, serial_number, algorithm)

Added in version 39.0.0.

Adds a request using the issuer’s name hash, key hash, the certificate serial number and hash algorithm.
You can call this method or add_certificate only once.

Parameters

• issuer_name_hash (bytes) – The hash of the issuer’s DER encoded name using the
same hash algorithm as the one specified in the algorithm parameter.

• issuer_key_hash (bytes) – The hash of the issuer’s public key bit string DER encoding
using the same hash algorithm as the one specified in the algorithm parameter.

• serial_number (int) – The serial number of the certificate being checked.

• algorithm – A HashAlgorithm instance. For OCSP only SHA1, SHA224, SHA256,
SHA384, and SHA512 are allowed.

add_extension(extval, critical)
Adds an extension to the request.

Parameters

• extval – An extension conforming to the ExtensionType interface.

• critical – Set to True if the extension must be understood and handled.

build()

Returns
A new OCSPRequest.

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.hashes import SHA256
>>> from cryptography.x509 import load_pem_x509_certificate, ocsp
>>> cert = load_pem_x509_certificate(pem_cert)
>>> issuer = load_pem_x509_certificate(pem_issuer)
>>> builder = ocsp.OCSPRequestBuilder()
>>> # SHA256 is in this example because while RFC 5019 originally
>>> # required SHA1 RFC 6960 updates that to SHA256.
>>> # However, depending on your requirements you may need to use SHA1
>>> # for compatibility reasons.
>>> builder = builder.add_certificate(cert, issuer, SHA256())
>>> req = builder.build()
>>> base64.b64encode(req.public_bytes(serialization.Encoding.DER))
b
→˓'MF8wXTBbMFkwVzANBglghkgBZQMEAgEFAAQgn3BowBaoh77h17ULfkX6781dUDPD82Taj8wO1jZWhZoEINxPgjoQth3w7q4AouKKerMxIMIuUG4EuWU2pZfwih52AgI/
→˓IA=='

2.2. X.509 15

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

Loading Responses

cryptography.x509.ocsp.load_der_ocsp_response(data)
Added in version 2.4.

Deserialize an OCSP response from DER encoded data.

Parameters
data (bytes) – The DER encoded OCSP response data.

Returns
An instance of OCSPResponse.

>>> from cryptography.x509 import ocsp
>>> ocsp_resp = ocsp.load_der_ocsp_response(der_ocsp_resp_unauth)
>>> print(ocsp_resp.response_status)
OCSPResponseStatus.UNAUTHORIZED

Creating Responses

class cryptography.x509.ocsp.OCSPResponseBuilder

Added in version 2.4.

This class is used to create OCSPResponse objects. You cannot set produced_at on OCSP responses at this
time. Instead the field is set to current UTC time when calling sign. For unsuccessful statuses call the class
method build_unsuccessful().

add_response(cert, issuer, algorithm, cert_status, this_update, next_update, revocation_time,
revocation_reason)

This method adds status information about the certificate that was requested to the response.

Parameters

• cert – The Certificate whose validity is being checked.

• issuer – The issuer Certificate of the certificate that is being checked.

• algorithm – A HashAlgorithm instance. For OCSP only SHA1, SHA224, SHA256,
SHA384, and SHA512 are allowed.

• cert_status – An item from the OCSPCertStatus enumeration.

• this_update – A naïve datetime.datetime object representing the most recent time
in UTC at which the status being indicated is known by the responder to be correct.

• next_update – A naïve datetime.datetime object or None. The time in UTC at or
before which newer information will be available about the status of the certificate.

• revocation_time – A naïve datetime.datetime object or None if the cert is not
revoked. The time in UTC at which the certificate was revoked.

• revocation_reason – An item from the ReasonFlags enumeration or None if the cert
is not revoked.

certificates(certs)
Add additional certificates that should be used to verify the signature on the response. This is typically
used when the responder utilizes an OCSP delegate.

Parameters
certs (list) – A list of Certificate objects.

16 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

responder_id(encoding, responder_cert)
Set the responderID on the OCSP response. This is the data a client will use to determine what certificate
signed the response.

Parameters

• responder_cert – The Certificate object for the certificate whose private key will
sign the OCSP response. If the certificate and key do not match an error will be raised
when calling sign.

• encoding – Either HASH or NAME.

add_extension(extval, critical)
Adds an extension to the response.

Parameters

• extval – An extension conforming to the ExtensionType interface.

• critical – Set to True if the extension must be understood and handled.

sign(private_key, algorithm)

Creates the OCSP response that can then be serialized and sent to clients. This method will create a
SUCCESSFUL response.

Parameters

• private_key – The RSAPrivateKey, DSAPrivateKey, EllipticCurvePrivateKey,
Ed25519PrivateKey or Ed448PrivateKey that will be used to sign the response.

• algorithm – The HashAlgorithm that will be used to generate the signature. This must
be None if the private_key is an Ed25519PrivateKey or an Ed448PrivateKey and
an instance of a HashAlgorithm otherwise. Please note that SHA1 can not be used here,
regardless of if it was used for add_response() or not.

Returns
A new OCSPResponse.

>>> import datetime
>>> from cryptography.hazmat.primitives import hashes, serialization
>>> from cryptography.x509 import load_pem_x509_certificate, ocsp
>>> cert = load_pem_x509_certificate(pem_cert)
>>> issuer = load_pem_x509_certificate(pem_issuer)
>>> responder_cert = load_pem_x509_certificate(pem_responder_cert)
>>> responder_key = serialization.load_pem_private_key(pem_responder_key, None)
>>> builder = ocsp.OCSPResponseBuilder()
>>> # SHA256 is in this example because while RFC 5019 originally
>>> # required SHA1 RFC 6960 updates that to SHA256.
>>> # However, depending on your requirements you may need to use SHA1
>>> # for compatibility reasons.
>>> builder = builder.add_response(
... cert=cert, issuer=issuer, algorithm=hashes.SHA256(),
... cert_status=ocsp.OCSPCertStatus.GOOD,
... this_update=datetime.datetime.now(),
... next_update=datetime.datetime.now(),
... revocation_time=None, revocation_reason=None
...).responder_id(
... ocsp.OCSPResponderEncoding.HASH, responder_cert
...)

(continues on next page)

2.2. X.509 17

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> response = builder.sign(responder_key, hashes.SHA256())
>>> response.certificate_status
<OCSPCertStatus.GOOD: 0>

classmethod build_unsuccessful(response_status)
Creates an unsigned OCSP response which can then be serialized and sent to clients.
build_unsuccessful may only be called with a OCSPResponseStatus that is not SUCCESSFUL.
Since this is a class method note that no other methods can or should be called as unsuccessful statuses do
not encode additional data.

Returns
A new OCSPResponse.

>>> from cryptography.hazmat.primitives import hashes, serialization
>>> from cryptography.x509 import load_pem_x509_certificate, ocsp
>>> response = ocsp.OCSPResponseBuilder.build_unsuccessful(
... ocsp.OCSPResponseStatus.UNAUTHORIZED
...)
>>> response.response_status
<OCSPResponseStatus.UNAUTHORIZED: 6>

Interfaces

class cryptography.x509.ocsp.OCSPRequest

Added in version 2.4.

An OCSPRequest is an object containing information about a certificate whose status is being checked.

issuer_key_hash

Type
bytes

The hash of the certificate issuer’s key. The hash algorithm used is defined by the hash_algorithm prop-
erty.

issuer_name_hash

Type
bytes

The hash of the certificate issuer’s name. The hash algorithm used is defined by the hash_algorithm
property.

hash_algorithm

Type
HashAlgorithm

The algorithm used to generate the issuer_key_hash and issuer_name_hash.

serial_number

Type
int

The serial number of the certificate to check.

18 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

extensions

Type
Extensions

The extensions encoded in the request.

public_bytes(encoding)

Parameters
encoding – The encoding to use. Only DER is supported.

Return bytes
The serialized OCSP request.

class cryptography.x509.ocsp.OCSPResponse

Added in version 2.4.

An OCSPResponse is the data provided by an OCSP responder in response to an OCSPRequest.

response_status

Type
OCSPResponseStatus

The status of the response.

signature_algorithm_oid

Type
ObjectIdentifier

Returns the object identifier of the signature algorithm used to sign the response. This will be one of the
OIDs from SignatureAlgorithmOID.

Raises
ValueError – If response_status is not SUCCESSFUL.

signature_hash_algorithm

Added in version 2.5.

Type
HashAlgorithm

Returns the HashAlgorithm which was used in signing this response. Can be None if signature did not
use separate hash (ED25519, ED448).

signature

Type
bytes

The signature bytes.

Raises
ValueError – If response_status is not SUCCESSFUL.

tbs_response_bytes

Type
bytes

The DER encoded bytes payload that is hashed and then signed. This data may be used to validate the
signature on the OCSP response.

2.2. X.509 19

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Raises
ValueError – If response_status is not SUCCESSFUL.

certificates

Type
list

A list of zero or more Certificate objects used to help build a chain to verify the OCSP response. This
situation occurs when the OCSP responder uses a delegate certificate.

Raises
ValueError – If response_status is not SUCCESSFUL.

responder_key_hash

Type
bytes or None

The responder’s key hash or None if the response has a responder_name.

Raises
ValueError – If response_status is not SUCCESSFUL.

responder_name

Type
Name or None

The responder’s Name or None if the response has a responder_key_hash.

Raises
ValueError – If response_status is not SUCCESSFUL.

produced_at

Type
datetime.datetime

A naïve datetime representing the time when the response was produced.

Raises
ValueError – If response_status is not SUCCESSFUL.

certificate_status

Type
OCSPCertStatus

The status of the certificate being checked.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

revocation_time

Type
datetime.datetime or None

A naïve datetime representing the time when the certificate was revoked or None if the certificate has not
been revoked.

20 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

revocation_reason

Type
ReasonFlags or None

The reason the certificate was revoked or None if not specified or not revoked.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

this_update

Type
datetime.datetime

A naïve datetime representing the most recent time at which the status being indicated is known by the
responder to have been correct.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

next_update

Type
datetime.datetime

A naïve datetime representing the time when newer information will be available.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

issuer_key_hash

Type
bytes

The hash of the certificate issuer’s key. The hash algorithm used is defined by the hash_algorithm prop-
erty.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

issuer_name_hash

Type
bytes

The hash of the certificate issuer’s name. The hash algorithm used is defined by the hash_algorithm
property.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

2.2. X.509 21

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

hash_algorithm

Type
HashAlgorithm

The algorithm used to generate the issuer_key_hash and issuer_name_hash.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

serial_number

Type
int

The serial number of the certificate that was checked.

Raises
ValueError – If response_status is not SUCCESSFUL or if multiple SINGLERESPs are
present.

extensions

Type
Extensions

The extensions encoded in the response.

single_extensions

Added in version 2.9.

Type
Extensions

The single extensions encoded in the response.

responses

Added in version 37.0.0.

Type
an iterator over OCSPSingleResponse

An iterator to access individual SINGLERESP structures.

public_bytes(encoding)

Parameters
encoding – The encoding to use. Only DER is supported.

Return bytes
The serialized OCSP response.

class cryptography.x509.ocsp.OCSPResponseStatus

Added in version 2.4.

An enumeration of response statuses.

SUCCESSFUL

Represents a successful OCSP response.

MALFORMED_REQUEST

May be returned by an OCSP responder that is unable to parse a given request.

22 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

INTERNAL_ERROR

May be returned by an OCSP responder that is currently experiencing operational problems.

TRY_LATER

May be returned by an OCSP responder that is overloaded.

SIG_REQUIRED

May be returned by an OCSP responder that requires signed OCSP requests.

UNAUTHORIZED

May be returned by an OCSP responder when queried for a certificate for which the responder is unaware
or an issuer for which the responder is not authoritative.

class cryptography.x509.ocsp.OCSPCertStatus

Added in version 2.4.

An enumeration of certificate statuses in an OCSP response.

GOOD

The value for a certificate that is not revoked.

REVOKED

The certificate being checked is revoked.

UNKNOWN

The certificate being checked is not known to the OCSP responder.

class cryptography.x509.ocsp.OCSPResponderEncoding

Added in version 2.4.

An enumeration of responderID encodings that can be passed to responder_id().

HASH

Encode the hash of the public key whose corresponding private key signed the response.

NAME

Encode the X.509 Name of the certificate whose private key signed the response.

class cryptography.x509.ocsp.OCSPSingleResponse

Added in version 37.0.0.

A class representing a single certificate response bundled into a larger OCSPResponse. Accessed via OCSPRe-
sponse.responses.

certificate_status

Type
OCSPCertStatus

The status of the certificate being checked.

revocation_time

Type
datetime.datetime or None

A naïve datetime representing the time when the certificate was revoked or None if the certificate has not
been revoked.

2.2. X.509 23

https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

revocation_reason

Type
ReasonFlags or None

The reason the certificate was revoked or None if not specified or not revoked.

this_update

Type
datetime.datetime

A naïve datetime representing the most recent time at which the status being indicated is known by the
responder to have been correct.

next_update

Type
datetime.datetime

A naïve datetime representing the time when newer information will be available.

issuer_key_hash

Type
bytes

The hash of the certificate issuer’s key. The hash algorithm used is defined by the hash_algorithm prop-
erty.

issuer_name_hash

Type
bytes

The hash of the certificate issuer’s name. The hash algorithm used is defined by the hash_algorithm
property.

hash_algorithm

Type
HashAlgorithm

The algorithm used to generate the issuer_key_hash and issuer_name_hash.

serial_number

Type
int

The serial number of the certificate that was checked.

2.2.4 X.509 Verification

Support for X.509 certificate verification, also known as path validation or chain building.

Note: While usable, these APIs should be considered unstable and not yet subject to our backwards compatibility
policy.

Example usage, with certifi providing the root of trust:

24 Chapter 2. Layout

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://pypi.org/project/certifi/

Cryptography Documentation, Release 43.0.0.dev1

>>> from cryptography.x509 import Certificate, DNSName, load_pem_x509_certificates
>>> from cryptography.x509.verification import PolicyBuilder, Store
>>> import certifi
>>> from datetime import datetime
>>> with open(certifi.where(), "rb") as pems:
... store = Store(load_pem_x509_certificates(pems.read()))
>>> builder = PolicyBuilder().store(store)
>>> builder = builder.time(verification_time)
>>> verifier = builder.build_server_verifier(DNSName("cryptography.io"))
>>> # NOTE: peer and untrusted_intermediates are Certificate and
>>> # list[Certificate] respectively, and should be loaded from the
>>> # application context that needs them verified, such as a
>>> # TLS socket.
>>> chain = verifier.verify(peer, untrusted_intermediates)

class cryptography.x509.verification.Store(certs)
Added in version 42.0.0.

A Store is an opaque set of public keys and subject identifiers that are considered trusted a priori. Stores are
typically created from the host OS’s root of trust, from a well-known source such as a browser CA bundle, or
from a small set of manually pre-trusted entities.

Parameters
certs – A list of one or more cryptography.x509.Certificate instances.

class cryptography.x509.verification.Subject

Added in version 42.0.0.

Type alias: A union of all subject types supported: cryptography.x509.general_name.DNSName,
cryptography.x509.general_name.IPAddress.

class cryptography.x509.verification.VerifiedClient

Added in version 43.0.0.

subjects

Type
list of GeneralName

The subjects presented in the verified client’s Subject Alternative Name extension.

chain

Type
A list of Certificate, in leaf-first order

The chain of certificates that forms the valid chain to the client certificate.

class cryptography.x509.verification.ClientVerifier

Added in version 43.0.0.

A ClientVerifier verifies client certificates.

It contains and describes various pieces of configurable path validation logic, such as how deep prospective
validation chains may go, which signature algorithms are allowed, and so forth.

ClientVerifier instances cannot be constructed directly; PolicyBuilder must be used.

2.2. X.509 25

Cryptography Documentation, Release 43.0.0.dev1

validation_time

Type
datetime.datetime

The verifier’s validation time.

max_chain_depth

Type
int

The verifier’s maximum intermediate CA chain depth.

store

Type
Store

The verifier’s trust store.

verify(leaf , intermediates)
Performs path validation on leaf, returning a valid path if one exists. The path is returned in leaf-first
order: the first member is leaf, followed by the intermediates used (if any), followed by a member of the
store.

Parameters

• leaf – The leaf Certificate to validate

• intermediates – A list of intermediate Certificate to attempt to use

Returns
A new instance of VerifiedClient

Raises

• VerificationError – If a valid chain cannot be constructed

• UnsupportedGeneralNameType – If a valid chain exists, but contains an unsupported
general name type

class cryptography.x509.verification.ServerVerifier

Added in version 42.0.0.

A ServerVerifier verifies server certificates.

It contains and describes various pieces of configurable path validation logic, such as which subject to expect,
how deep prospective validation chains may go, which signature algorithms are allowed, and so forth.

ServerVerifier instances cannot be constructed directly; PolicyBuilder must be used.

subject

Type
Subject

The verifier’s subject.

validation_time

Type
datetime.datetime

The verifier’s validation time.

26 Chapter 2. Layout

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

max_chain_depth

Type
int

The verifier’s maximum intermediate CA chain depth.

store

Type
Store

The verifier’s trust store.

verify(leaf , intermediates)
Performs path validation on leaf, returning a valid path if one exists. The path is returned in leaf-first
order: the first member is leaf, followed by the intermediates used (if any), followed by a member of the
store.

Parameters

• leaf – The leaf Certificate to validate

• intermediates – A list of intermediate Certificate to attempt to use

Returns
A list containing a valid chain from leaf to a member of ServerVerifier.store.

Raises
VerificationError – If a valid chain cannot be constructed

class cryptography.x509.verification.VerificationError

Added in version 42.0.0.

The error raised when path validation fails.

class cryptography.x509.verification.PolicyBuilder

Added in version 42.0.0.

A PolicyBuilder provides a builder-style interface for constructing a Verifier.

time(new_time)
Sets the verifier’s verification time.

If not called explicitly, this is set to datetime.datetime.now() when build_server_verifier() or
build_client_verifier() is called.

Parameters
new_time – The datetime.datetime to use in the verifier

Returns
A new instance of PolicyBuilder

store(new_store)
Sets the verifier’s trust store.

Parameters
new_store – The Store to use in the verifier

Returns
A new instance of PolicyBuilder

2.2. X.509 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.datetime.now
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

max_chain_depth(new_max_chain_depth)
Sets the verifier’s maximum chain building depth.

This depth behaves tracks the length of the intermediate CA chain: a maximum depth of zero means that the
leaf must be directly issued by a member of the store, a depth of one means no more than one intermediate
CA, and so forth. Note that self-issued intermediates don’t count against the chain depth, per RFC 5280.

Parameters
new_max_chain_depth – The maximum depth to allow in the verifier

Returns
A new instance of PolicyBuilder

build_server_verifier(subject)
Builds a verifier for verifying server certificates.

Parameters
subject – A Subject to use in the verifier

Returns
An instance of ServerVerifier

build_client_verifier()

Added in version 43.0.0.

Builds a verifier for verifying client certificates.

Warning: This API is not suitable for website (i.e. server) certificate verification. You must use
build_server_verifier() for server verification.

Returns
An instance of ClientVerifier

2.2.5 X.509 Reference

Loading Certificates

cryptography.x509.load_pem_x509_certificate(data)
Added in version 0.7.

Deserialize a certificate from PEM encoded data. PEM certificates are base64 decoded and have delimiters that
look like -----BEGIN CERTIFICATE-----.

Parameters
data (bytes) – The PEM encoded certificate data.

Returns
An instance of Certificate.

>>> from cryptography import x509
>>> cert = x509.load_pem_x509_certificate(pem_data)
>>> cert.serial_number
2

28 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

cryptography.x509.load_pem_x509_certificates(data)
Added in version 39.0.0.

Deserialize one or more certificates from PEM encoded data.

This is like load_pem_x509_certificate(), but allows for loading multiple certificates (as adjacent PEMs)
at once.

Parameters
data (bytes) – One or more PEM-encoded certificates.

Returns
list of Certificate

Raises
ValueError – If there isn’t at least one certificate, or if any certificate is malformed.

cryptography.x509.load_der_x509_certificate(data)
Added in version 0.7.

Deserialize a certificate from DER encoded data. DER is a binary format and is commonly found in files with
the .cer extension (although file extensions are not a guarantee of encoding type).

Parameters
data (bytes) – The DER encoded certificate data.

Returns
An instance of Certificate.

Loading Certificate Revocation Lists

cryptography.x509.load_pem_x509_crl(data)
Added in version 1.1.

Deserialize a certificate revocation list (CRL) from PEM encoded data. PEM requests are base64 decoded and
have delimiters that look like -----BEGIN X509 CRL-----.

Parameters
data (bytes) – The PEM encoded request data.

Returns
An instance of CertificateRevocationList.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes
>>> crl = x509.load_pem_x509_crl(pem_crl_data)
>>> isinstance(crl.signature_hash_algorithm, hashes.SHA256)
True

cryptography.x509.load_der_x509_crl(data)
Added in version 1.1.

Deserialize a certificate revocation list (CRL) from DER encoded data. DER is a binary format.

Parameters
data (bytes) – The DER encoded request data.

Returns
An instance of CertificateRevocationList.

2.2. X.509 29

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Loading Certificate Signing Requests

cryptography.x509.load_pem_x509_csr(data)
Added in version 0.9.

Deserialize a certificate signing request (CSR) from PEM encoded data. PEM requests are base64 decoded
and have delimiters that look like -----BEGIN CERTIFICATE REQUEST-----. This format is also known as
PKCS#10.

Parameters
data (bytes) – The PEM encoded request data.

Returns
An instance of CertificateSigningRequest.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes
>>> csr = x509.load_pem_x509_csr(pem_req_data)
>>> isinstance(csr.signature_hash_algorithm, hashes.SHA256)
True

cryptography.x509.load_der_x509_csr(data)
Added in version 0.9.

Deserialize a certificate signing request (CSR) from DER encoded data. DER is a binary format and is not
commonly used with CSRs.

Parameters
data (bytes) – The DER encoded request data.

Returns
An instance of CertificateSigningRequest.

X.509 Certificate Object

class cryptography.x509.Certificate

Added in version 0.7.

version

Type
Version

The certificate version as an enumeration. Version 3 certificates are the latest version and also the only type
you should see in practice.

Raises
cryptography.x509.InvalidVersion – If the version in the certificate is not a known
X.509 version.

>>> cert.version
<Version.v3: 2>

fingerprint(algorithm)

Parameters
algorithm – The HashAlgorithm that will be used to generate the fingerprint.

30 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Return bytes
The fingerprint using the supplied hash algorithm, as bytes.

>>> from cryptography.hazmat.primitives import hashes
>>> cert.fingerprint(hashes.SHA256())
b'\x86\xd2\x187Gc\xfc\xe7}[+E9\x8d\xb4\x8f\x10\xe5S\xda\x18u\xbe}a\x03\x08[\xac\
→˓xa04?'

serial_number

Type
int

The serial as a Python integer.

>>> cert.serial_number
2

public_key()

The public key associated with the certificate.

Returns
One of CertificatePublicKeyTypes.

>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> public_key = cert.public_key()
>>> isinstance(public_key, rsa.RSAPublicKey)
True

public_key_algorithm_oid

Added in version 43.0.0.

Type
ObjectIdentifier

Returns the ObjectIdentifier of the public key algorithm found inside the certificate. This will be one
of the OIDs from PublicKeyAlgorithmOID.

>>> cert.public_key_algorithm_oid
<ObjectIdentifier(oid=1.2.840.113549.1.1.1, name=rsaEncryption)>

not_valid_before

Type
datetime.datetime

Warning: This property is deprecated and will be removed in a future version. Please switch to the
timezone-aware variant not_valid_before_utc().

A naïve datetime representing the beginning of the validity period for the certificate in UTC. This value is
inclusive.

>>> cert.not_valid_before
datetime.datetime(2010, 1, 1, 8, 30)

2.2. X.509 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

not_valid_before_utc

Added in version 42.0.0.

Type
datetime.datetime

A timezone-aware datetime representing the beginning of the validity period for the certificate in UTC.
This value is inclusive.

>>> cert.not_valid_before_utc
datetime.datetime(2010, 1, 1, 8, 30, tzinfo=datetime.timezone.utc)

not_valid_after

Type
datetime.datetime

Warning: This property is deprecated and will be removed in a future version. Please switch to the
timezone-aware variant not_valid_after_utc().

A naïve datetime representing the end of the validity period for the certificate in UTC. This value is inclu-
sive.

>>> cert.not_valid_after
datetime.datetime(2030, 12, 31, 8, 30)

not_valid_after_utc

Added in version 42.0.0.

Type
datetime.datetime

A timezone-aware datetime representing the end of the validity period for the certificate in UTC. This value
is inclusive.

>>> cert.not_valid_after_utc
datetime.datetime(2030, 12, 31, 8, 30, tzinfo=datetime.timezone.utc)

issuer

Added in version 0.8.

Type
Name

The Name of the issuer.

subject

Added in version 0.8.

Type
Name

The Name of the subject.

signature_hash_algorithm

Type
HashAlgorithm

32 Chapter 2. Layout

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

Returns the HashAlgorithm which was used in signing this certificate. Can be None if signature did not
use separate hash (ED25519, ED448).

>>> from cryptography.hazmat.primitives import hashes
>>> isinstance(cert.signature_hash_algorithm, hashes.SHA256)
True

signature_algorithm_oid

Added in version 1.6.

Type
ObjectIdentifier

Returns the ObjectIdentifier of the signature algorithm used to sign the certificate. This will be one
of the OIDs from SignatureAlgorithmOID.

>>> cert.signature_algorithm_oid
<ObjectIdentifier(oid=1.2.840.113549.1.1.11, name=sha256WithRSAEncryption)>

signature_algorithm_parameters

Added in version 41.0.0.

Returns the parameters of the signature algorithm used to sign the certificate. For RSA signatures it will
return either a PKCS1v15 or PSS object.

For ECDSA signatures it will return an ECDSA .

For EdDSA and DSA signatures it will return None.

These objects can be used to verify signatures on the certificate.

Returns
None, PKCS1v15, PSS, or ECDSA

>>> from cryptography.hazmat.primitives.asymmetric import padding
>>> pss_cert = x509.load_pem_x509_certificate(rsa_pss_pem_cert)
>>> isinstance(pss_cert.signature_algorithm_parameters, padding.PSS)
True

extensions

Type
Extensions

The extensions encoded in the certificate.

Raises

• cryptography.x509.DuplicateExtension – If more than one extension of the same
type is found within the certificate.

• cryptography.x509.UnsupportedGeneralNameType – If an extension contains a gen-
eral name that is not supported.

>>> for ext in cert.extensions:
... print(ext)
<Extension(oid=<ObjectIdentifier(oid=2.5.29.35, name=authorityKeyIdentifier)>,␣
→˓critical=False, value=<AuthorityKeyIdentifier(key_identifier=b'\xe4}_\xd1\\\
→˓x95\x86\x08,\x05\xae\xbeu\xb6e\xa7\xd9]\xa8f', authority_cert_issuer=None,␣

(continues on next page)

2.2. X.509 33

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

→˓authority_cert_serial_number=None)>)>
<Extension(oid=<ObjectIdentifier(oid=2.5.29.14, name=subjectKeyIdentifier)>,␣
→˓critical=False, value=<SubjectKeyIdentifier(digest=b'X\x01\x84$\x1b\xbc+R\
→˓x94J=\xa5\x10r\x14Q\xf5\xaf:\xc9')>)>
<Extension(oid=<ObjectIdentifier(oid=2.5.29.15, name=keyUsage)>, critical=True,␣
→˓value=<KeyUsage(digital_signature=False, content_commitment=False, key_
→˓encipherment=False, data_encipherment=False, key_agreement=False, key_cert_
→˓sign=True, crl_sign=True, encipher_only=False, decipher_only=False)>)>
<Extension(oid=<ObjectIdentifier(oid=2.5.29.32, name=certificatePolicies)>,␣
→˓critical=False, value=<CertificatePolicies([<PolicyInformation(policy_
→˓identifier=<ObjectIdentifier(oid=2.16.840.1.101.3.2.1.48.1, name=Unknown OID)>
→˓, policy_qualifiers=None)>])>)>
<Extension(oid=<ObjectIdentifier(oid=2.5.29.19, name=basicConstraints)>,␣
→˓critical=True, value=<BasicConstraints(ca=True, path_length=None)>)>

signature

Added in version 1.2.

Type
bytes

The bytes of the certificate’s signature.

tbs_certificate_bytes

Added in version 1.2.

type
bytes

The DER encoded bytes payload (as defined by RFC 5280) that is hashed and then signed by
the private key of the certificate’s issuer. This data may be used to validate a signature, but use
extreme caution as certificate validation is a complex problem that involves much more than just
signature checks.

To validate the signature on a certificate you can do the following. Note: This only verifies that
the certificate was signed with the private key associated with the public key provided and does
not perform any of the other checks needed for secure certificate validation. Additionally, this
example will only work for RSA public keys with PKCS1v15 signatures, and so it can’t be used
for general purpose signature verification.

>>> from cryptography.hazmat.primitives.serialization import load_pem_
→˓public_key
>>> from cryptography.hazmat.primitives.asymmetric import padding
>>> issuer_public_key = load_pem_public_key(pem_issuer_public_key)
>>> cert_to_check = x509.load_pem_x509_certificate(pem_data_to_check)
>>> issuer_public_key.verify(
... cert_to_check.signature,
... cert_to_check.tbs_certificate_bytes,
... # Depends on the algorithm used to create the certificate
... padding.PKCS1v15(),
... cert_to_check.signature_hash_algorithm,
...)

An InvalidSignature exception will be raised if the signature fails to verify.

34 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

verify_directly_issued_by(issuer)
Added in version 40.0.0.

Parameters
issuer (Certificate) – The issuer certificate to check against.

Warning: This method verifies that the certificate issuer name matches the issuer subject name and
that the certificate is signed by the issuer’s private key. No other validation is performed. Callers
are responsible for performing any additional validations required for their use case (e.g. checking the
validity period, whether the signer is allowed to issue certificates, that the issuing certificate has a strong
public key, etc).

Validates that the certificate is signed by the provided issuer and that the issuer’s subject name matches the
issuer name of the certificate.

Returns
None

Raises

• ValueError – If the issuer name on the certificate does not match the subject name of the
issuer or the signature algorithm is unsupported.

• TypeError – If the issuer does not have a supported public key type.

• cryptography.exceptions.InvalidSignature – If the signature fails to verify.

tbs_precertificate_bytes

Added in version 38.0.0.

Type
bytes

Raises
ValueError – If the certificate doesn’t have the expected Certificate Transparency exten-
sions.

The DER encoded bytes payload (as defined by RFC 6962) that is hashed and then signed by the private key
of the pre-certificate’s issuer. This data may be used to validate a Signed Certificate Timestamp’s signature,
but use extreme caution as SCT validation is a complex problem that involves much more than just signature
checks.

This method is primarily useful in the context of programs that interact with and verify the products of
Certificate Transparency logs, as specified in RFC 6962. If you are not directly interacting with a Certificate
Transparency log, this method unlikely to be what you want. To make unintentional misuse less likely, it
raises a ValueError if the underlying certificate does not contain the expected Certificate Transparency
extensions.

public_bytes(encoding)
Added in version 1.0.

Parameters
encoding – The Encoding that will be used to serialize the certificate.

Return bytes
The data that can be written to a file or sent over the network to be verified by clients.

2.2. X.509 35

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://datatracker.ietf.org/doc/html/rfc6962.html
https://datatracker.ietf.org/doc/html/rfc6962.html

Cryptography Documentation, Release 43.0.0.dev1

X.509 CRL (Certificate Revocation List) Object

class cryptography.x509.CertificateRevocationList

Added in version 1.0.

A CertificateRevocationList is an object representing a list of revoked certificates. The object is iterable and will
yield the RevokedCertificate objects stored in this CRL.

>>> len(crl)
1
>>> revoked_certificate = crl[0]
>>> type(revoked_certificate)
<class '...RevokedCertificate'>
>>> for r in crl:
... print(r.serial_number)
0

fingerprint(algorithm)

Parameters
algorithm – The HashAlgorithm that will be used to generate the fingerprint.

Return bytes
The fingerprint using the supplied hash algorithm, as bytes.

>>> from cryptography.hazmat.primitives import hashes
>>> crl.fingerprint(hashes.SHA256())
b'\xe3\x1d\xb5P\x18\x9ed\x9f\x16O\x9dm\xc1>\x8c\xca\xb1\xc6x?T\x9f\xe9t_\x1d\
→˓x8dF8V\xf78'

get_revoked_certificate_by_serial_number(serial_number)
Added in version 2.3.

Parameters
serial_number – The serial as a Python integer.

Returns
RevokedCertificate if the serial_number is present in the CRL or None if it is not.

signature_hash_algorithm

Type
HashAlgorithm

Returns the HashAlgorithm which was used in signing this CRL. Can be None if signature did not use
separate hash (ED25519, ED448).

>>> from cryptography.hazmat.primitives import hashes
>>> isinstance(crl.signature_hash_algorithm, hashes.SHA256)
True

signature_algorithm_oid

Added in version 1.6.

Type
ObjectIdentifier

Returns the ObjectIdentifier of the signature algorithm used to sign the CRL. This will be one of the
OIDs from SignatureAlgorithmOID.

36 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

>>> crl.signature_algorithm_oid
<ObjectIdentifier(oid=1.2.840.113549.1.1.11, name=sha256WithRSAEncryption)>

signature_algorithm_parameters

Added in version 42.0.0.

Returns the parameters of the signature algorithm used to sign the certificate revocation list. For RSA
signatures it will return either a PKCS1v15 or PSS object.

For ECDSA signatures it will return an ECDSA .

For EdDSA and DSA signatures it will return None.

These objects can be used to verify the CRL signature.

Returns
None, PKCS1v15, PSS, or ECDSA

issuer

Type
Name

The Name of the issuer.

>>> crl.issuer
<Name(C=US,CN=cryptography.io)>

next_update

Type
datetime.datetime

Warning: This property is deprecated and will be removed in a future version. Please switch to the
timezone-aware variant next_update_utc().

A naïve datetime representing when the next update to this CRL is expected.

>>> crl.next_update
datetime.datetime(2016, 1, 1, 0, 0)

next_update_utc

Added in version 42.0.0.

Type
datetime.datetime

A timezone-aware datetime representing when the next update to this CRL is expected.

>>> crl.next_update_utc
datetime.datetime(2016, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)

last_update

Type
datetime.datetime

2.2. X.509 37

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

Warning: This property is deprecated and will be removed in a future version. Please switch to the
timezone-aware variant last_update_utc().

A naïve datetime representing when this CRL was last updated.

>>> crl.last_update
datetime.datetime(2015, 1, 1, 0, 0)

last_update_utc

Added in version 42.0.0.

Type
datetime.datetime

A timezone-aware datetime representing when this CRL was last updated.

>>> crl.last_update_utc
datetime.datetime(2015, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)

extensions

Type
Extensions

The extensions encoded in the CRL.

signature

Added in version 1.2.

Type
bytes

The bytes of the CRL’s signature.

tbs_certlist_bytes

Added in version 1.2.

Type
bytes

The DER encoded bytes payload (as defined by RFC 5280) that is hashed and then signed by the private
key of the CRL’s issuer. This data may be used to validate a signature, but use extreme caution as CRL
validation is a complex problem that involves much more than just signature checks.

public_bytes(encoding)
Added in version 1.2.

Parameters
encoding – The Encoding that will be used to serialize the certificate revocation list.

Return bytes
The data that can be written to a file or sent over the network and used as part of a certificate
verification process.

is_signature_valid(public_key)
Added in version 2.1.

38 Chapter 2. Layout

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

Warning: Checking the validity of the signature on the CRL is insufficient to know if the CRL should
be trusted. More details are available in RFC 5280.

Returns True if the CRL signature is correct for given public key, False otherwise.

X.509 Certificate Builder

class cryptography.x509.CertificateBuilder

Added in version 1.0.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> from cryptography.x509.oid import NameOID
>>> import datetime
>>> one_day = datetime.timedelta(1, 0, 0)
>>> private_key = rsa.generate_private_key(
... public_exponent=65537,
... key_size=2048,
...)
>>> public_key = private_key.public_key()
>>> builder = x509.CertificateBuilder()
>>> builder = builder.subject_name(x509.Name([
... x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io'),
...]))
>>> builder = builder.issuer_name(x509.Name([
... x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io'),
...]))
>>> builder = builder.not_valid_before(datetime.datetime.today() - one_day)
>>> builder = builder.not_valid_after(datetime.datetime.today() + (one_day * 30))
>>> builder = builder.serial_number(x509.random_serial_number())
>>> builder = builder.public_key(public_key)
>>> builder = builder.add_extension(
... x509.SubjectAlternativeName(
... [x509.DNSName('cryptography.io')]
...),
... critical=False
...)
>>> builder = builder.add_extension(
... x509.BasicConstraints(ca=False, path_length=None), critical=True,
...)
>>> certificate = builder.sign(
... private_key=private_key, algorithm=hashes.SHA256(),
...)
>>> isinstance(certificate, x509.Certificate)
True

issuer_name(name)
Sets the issuer’s distinguished name.

Parameters
name – The Name that describes the issuer (CA).

2.2. X.509 39

https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

subject_name(name)
Sets the subject’s distinguished name.

Parameters
name – The Name that describes the subject.

public_key(public_key)
Sets the subject’s public key.

Parameters
public_key – The subject’s public key. This can be one of CertificatePublicKeyTypes.

serial_number(serial_number)
Sets the certificate’s serial number (an integer). The CA’s policy determines how it attributes serial numbers
to certificates. This number must uniquely identify the certificate given the issuer. CABForum Guidelines
require entropy in the serial number to provide protection against hash collision attacks. For more infor-
mation on secure random number generation, see Random number generation.

Parameters
serial_number – Integer number that will be used by the CA to identify this certifi-
cate (most notably during certificate revocation checking). Users should consider using
random_serial_number() when possible.

not_valid_before(time)
Sets the certificate’s activation time. This is the time from which clients can start trusting the certificate. It
may be different from the time at which the certificate was created.

Parameters
time – The datetime.datetime object (in UTC) that marks the activation time for the
certificate. The certificate may not be trusted clients if it is used before this time.

not_valid_after(time)
Sets the certificate’s expiration time. This is the time from which clients should no longer trust the certifi-
cate. The CA’s policy will determine how long the certificate should remain in use.

Parameters
time – The datetime.datetime object (in UTC) that marks the expiration time for the
certificate. The certificate may not be trusted clients if it is used after this time.

add_extension(extval, critical)
Adds an X.509 extension to the certificate.

Parameters

• extval – An extension conforming to the ExtensionType interface.

• critical – Set to True if the extension must be understood and handled by whoever reads
the certificate.

sign(private_key, algorithm, *, rsa_padding=None)
Sign the certificate using the CA’s private key.

Parameters

• private_key – The key that will be used to sign the certificate, one of
CertificateIssuerPrivateKeyTypes.

• algorithm – The HashAlgorithm that will be used to generate the signature. This must
be None if the private_key is an Ed25519PrivateKey or an Ed448PrivateKey and
an instance of a HashAlgorithm otherwise.

40 Chapter 2. Layout

https://cabforum.org/baseline-requirements-documents/
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

• rsa_padding (None, PKCS1v15, or PSS) – Added in version 41.0.0.

This is a keyword-only argument. If private_key is an RSAPrivateKey then this can be
set to either PKCS1v15 or PSS to sign with those respective paddings. If this is None then
RSA keys will default to PKCS1v15 padding. All other key types must not pass a value
other than None.

Returns
Certificate

X.509 CSR (Certificate Signing Request) Object

class cryptography.x509.CertificateSigningRequest

Added in version 0.9.

public_key()

The public key associated with the request.

Returns
One of CertificatePublicKeyTypes.

>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> public_key = csr.public_key()
>>> isinstance(public_key, rsa.RSAPublicKey)
True

public_key_algorithm_oid

Added in version 43.0.0.

Type
ObjectIdentifier

Returns the ObjectIdentifier of the public key algorithm found inside the certificate. This will be one
of the OIDs from PublicKeyAlgorithmOID.

>>> csr.public_key_algorithm_oid
<ObjectIdentifier(oid=1.2.840.113549.1.1.1, name=rsaEncryption)>

subject

Type
Name

The Name of the subject.

signature_hash_algorithm

Type
HashAlgorithm

Returns the HashAlgorithm which was used in signing this request. Can be None if signature did not use
separate hash (ED25519, ED448).

>>> from cryptography.hazmat.primitives import hashes
>>> isinstance(csr.signature_hash_algorithm, hashes.SHA256)
True

2.2. X.509 41

Cryptography Documentation, Release 43.0.0.dev1

signature_algorithm_oid

Added in version 1.6.

Type
ObjectIdentifier

Returns the ObjectIdentifier of the signature algorithm used to sign the request. This will be one of
the OIDs from SignatureAlgorithmOID.

>>> csr.signature_algorithm_oid
<ObjectIdentifier(oid=1.2.840.113549.1.1.11, name=sha256WithRSAEncryption)>

signature_algorithm_parameters

Added in version 42.0.0.

Returns the parameters of the signature algorithm used to sign the certificate signing request. For RSA
signatures it will return either a PKCS1v15 or PSS object.

For ECDSA signatures it will return an ECDSA .

For EdDSA and DSA signatures it will return None.

These objects can be used to verify signatures on the signing request.

Returns
None, PKCS1v15, PSS, or ECDSA

extensions

Type
Extensions

The extensions encoded in the certificate signing request.

Raises

• cryptography.x509.DuplicateExtension – If more than one extension of the same
type is found within the certificate signing request.

• cryptography.x509.UnsupportedGeneralNameType – If an extension contains a gen-
eral name that is not supported.

attributes

Added in version 36.0.0.

Type
Attributes

The attributes encoded in the certificate signing request.

public_bytes(encoding)
Added in version 1.0.

Parameters
encoding – The Encoding that will be used to serialize the certificate request.

Return bytes
The data that can be written to a file or sent over the network to be signed by the certificate
authority.

42 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

signature

Added in version 1.2.

Type
bytes

The bytes of the certificate signing request’s signature.

tbs_certrequest_bytes

Added in version 1.2.

Type
bytes

The DER encoded bytes payload (as defined by RFC 2986) that is hashed and then signed by the private
key (corresponding to the public key embedded in the CSR). This data may be used to validate the CSR
signature.

is_signature_valid

Added in version 1.3.

Returns True if the CSR signature is correct, False otherwise.

X.509 Certificate Revocation List Builder

class cryptography.x509.CertificateRevocationListBuilder

Added in version 1.2.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> from cryptography.x509.oid import NameOID
>>> import datetime
>>> one_day = datetime.timedelta(1, 0, 0)
>>> private_key = rsa.generate_private_key(
... public_exponent=65537,
... key_size=2048,
...)
>>> builder = x509.CertificateRevocationListBuilder()
>>> builder = builder.issuer_name(x509.Name([
... x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io CA'),
...]))
>>> builder = builder.last_update(datetime.datetime.today())
>>> builder = builder.next_update(datetime.datetime.today() + one_day)
>>> revoked_cert = x509.RevokedCertificateBuilder().serial_number(
... 333
...).revocation_date(
... datetime.datetime.today()
...).build()
>>> builder = builder.add_revoked_certificate(revoked_cert)
>>> crl = builder.sign(
... private_key=private_key, algorithm=hashes.SHA256(),
...)
>>> len(crl)
1

2.2. X.509 43

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc2986.html

Cryptography Documentation, Release 43.0.0.dev1

issuer_name(name)
Sets the issuer’s distinguished name.

Parameters
name – The Name that describes the issuer (CA).

last_update(time)
Sets this CRL’s activation time. This is the time from which clients can start trusting this CRL. It may be
different from the time at which this CRL was created. This is also known as the thisUpdate time.

Parameters
time – The datetime.datetime object (in UTC) that marks the activation time for this
CRL. The CRL may not be trusted if it is used before this time.

next_update(time)
Sets this CRL’s next update time. This is the time by which a new CRL will be issued. The CA is allowed
to issue a new CRL before this date, however clients are not required to check for it.

Parameters
time – The datetime.datetime object (in UTC) that marks the next update time for this
CRL.

add_extension(extval, critical)
Adds an X.509 extension to this CRL.

Parameters

• extval – An extension with the ExtensionType interface.

• critical – Set to True if the extension must be understood and handled by whoever reads
the CRL.

add_revoked_certificate(revoked_certificate)
Adds a revoked certificate to this CRL.

Parameters
revoked_certificate – An instance of RevokedCertificate. These can be obtained
from an existing CRL or created with RevokedCertificateBuilder.

sign(private_key, algorithm, *, rsa_padding=None)
Sign this CRL using the CA’s private key.

Parameters

• private_key – The private key that will be used to sign the certificate, one of
CertificateIssuerPrivateKeyTypes.

• algorithm – The HashAlgorithm that will be used to generate the signature. This must
be None if the private_key is an Ed25519PrivateKey or an Ed448PrivateKey and
an instance of a HashAlgorithm otherwise.

• rsa_padding (None, PKCS1v15, or PSS) – Added in version 42.0.0.

This is a keyword-only argument. If private_key is an RSAPrivateKey then this can be
set to either PKCS1v15 or PSS to sign with those respective paddings. If this is None then
RSA keys will default to PKCS1v15 padding. All other key types must not pass a value
other than None.

Returns
CertificateRevocationList

44 Chapter 2. Layout

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

X.509 Revoked Certificate Object

class cryptography.x509.RevokedCertificate

Added in version 1.0.

serial_number

Type
int

An integer representing the serial number of the revoked certificate.

>>> revoked_certificate.serial_number
0

revocation_date

Type
datetime.datetime

Warning: This property is deprecated and will be removed in a future version. Please switch to the
timezone-aware variant revocation_date_utc().

A naïve datetime representing the date this certificates was revoked.

>>> revoked_certificate.revocation_date
datetime.datetime(2015, 1, 1, 0, 0)

revocation_date_utc

Added in version 42.0.0.

Type
datetime.datetime

A timezone-aware datetime representing the date this certificates was revoked.

>>> revoked_certificate.revocation_date_utc
datetime.datetime(2015, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)

extensions

Type
Extensions

The extensions encoded in the revoked certificate.

>>> for ext in revoked_certificate.extensions:
... print(ext)
<Extension(oid=<ObjectIdentifier(oid=2.5.29.24, name=invalidityDate)>,␣
→˓critical=False, value=<InvalidityDate(invalidity_date=2015-01-01 00:00:00)>)>
<Extension(oid=<ObjectIdentifier(oid=2.5.29.21, name=cRLReason)>,␣
→˓critical=False, value=<CRLReason(reason=ReasonFlags.key_compromise)>)>

2.2. X.509 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

X.509 Revoked Certificate Builder

class cryptography.x509.RevokedCertificateBuilder

This class is used to create RevokedCertificate objects that can be used with the
CertificateRevocationListBuilder.

Added in version 1.2.

>>> from cryptography import x509
>>> import datetime
>>> builder = x509.RevokedCertificateBuilder()
>>> builder = builder.revocation_date(datetime.datetime.today())
>>> builder = builder.serial_number(3333)
>>> revoked_certificate = builder.build()
>>> isinstance(revoked_certificate, x509.RevokedCertificate)
True

serial_number(serial_number)
Sets the revoked certificate’s serial number.

Parameters
serial_number – Integer number that is used to identify the revoked certificate.

revocation_date(time)
Sets the certificate’s revocation date.

Parameters
time – The datetime.datetime object (in UTC) that marks the revocation time for the
certificate.

add_extension(extval, critical)
Adds an X.509 extension to this revoked certificate.

Parameters

• extval – An instance of one of the CRL entry extensions.

• critical – Set to True if the extension must be understood and handled.

build()

Create a revoked certificate object.

Returns
RevokedCertificate

X.509 CSR (Certificate Signing Request) Builder Object

class cryptography.x509.CertificateSigningRequestBuilder

Added in version 1.0.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> from cryptography.x509.oid import AttributeOID, NameOID
>>> private_key = rsa.generate_private_key(
... public_exponent=65537,

(continues on next page)

46 Chapter 2. Layout

https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

... key_size=2048,

...)
>>> builder = x509.CertificateSigningRequestBuilder()
>>> builder = builder.subject_name(x509.Name([
... x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io'),
...]))
>>> builder = builder.add_extension(
... x509.BasicConstraints(ca=False, path_length=None), critical=True,
...)
>>> builder = builder.add_attribute(
... AttributeOID.CHALLENGE_PASSWORD, b"changeit"
...)
>>> request = builder.sign(
... private_key, hashes.SHA256()
...)
>>> isinstance(request, x509.CertificateSigningRequest)
True

subject_name(name)

Parameters
name – The Name of the certificate subject.

Returns
A new CertificateSigningRequestBuilder.

add_extension(extension, critical)

Parameters

• extension – An extension conforming to the ExtensionType interface.

• critical – Set to True if the extension must be understood and handled by whoever reads
the certificate.

Returns
A new CertificateSigningRequestBuilder.

add_attribute(oid, value)
Added in version 3.0.

Parameters

• oid – An ObjectIdentifier instance.

• value (bytes) – The value of the attribute.

Returns
A new CertificateSigningRequestBuilder.

sign(private_key, algorithm, *, rsa_padding=None)

Parameters

• private_key – The private key that will be used to sign the request. When the request is
signed by a certificate authority, the private key’s associated public key will be stored in
the resulting certificate. One of CertificateIssuerPrivateKeyTypes.

2.2. X.509 47

https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

• algorithm – The HashAlgorithm that will be used to generate the request signature. This
must be None if the private_key is an Ed25519PrivateKey or an Ed448PrivateKey
and an instance of a HashAlgorithm otherwise.

• rsa_padding (None, PKCS1v15, or PSS) – Added in version 42.0.0.

This is a keyword-only argument. If private_key is an RSAPrivateKey then this can be
set to either PKCS1v15 or PSS to sign with those respective paddings. If this is None then
RSA keys will default to PKCS1v15 padding. All other key types must not pass a value
other than None.

Returns
A new CertificateSigningRequest.

class cryptography.x509.Name

Added in version 0.8.

An X509 Name is an ordered list of attributes. The object is iterable to get every attribute or you can use
Name.get_attributes_for_oid() to obtain the specific type you want. Names are sometimes represented
as a slash or comma delimited string (e.g. /CN=mydomain.com/O=My Org/C=US or CN=mydomain.com,O=My
Org,C=US).

Technically, a Name is a list of sets of attributes, called Relative Distinguished Names or RDNs, although
multi-valued RDNs are rarely encountered. The iteration order of values within a multi-valued RDN is pre-
served. If you need to handle multi-valued RDNs, the rdns property gives access to an ordered list of
RelativeDistinguishedName objects.

A Name can be initialized with an iterable of NameAttribute (the common case where each RDN has a single
attribute) or an iterable of RelativeDistinguishedName objects (in the rare case of multi-valued RDNs).

>>> len(cert.subject)
3
>>> for attribute in cert.subject:
... print(attribute)
<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.6, name=countryName)>, value='US')>
<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.10, name=organizationName)>, value=
→˓'Test Certificates 2011')>
<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value='Good CA
→˓')>

rdns

Added in version 1.6.

Type
list of RelativeDistinguishedName

classmethod from_rfc4514_string(data, attr_name_overrides=None)

Parameters

• data (str) – An RFC 4514 string.

• attr_name_overrides – Specify custom OID to name mappings, which can be used to
match vendor-specific extensions. See NameOID for common attribute OIDs.

Returns
A Name parsed from data.

48 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#str
https://datatracker.ietf.org/doc/html/rfc4514.html

Cryptography Documentation, Release 43.0.0.dev1

>>> x509.Name.from_rfc4514_string("CN=cryptography.io")
<Name(CN=cryptography.io)>
>>> x509.Name.from_rfc4514_string("E=pyca@cryptography.io", {"E": NameOID.EMAIL_
→˓ADDRESS})
<Name(1.2.840.113549.1.9.1=pyca@cryptography.io)>

get_attributes_for_oid(oid)

Parameters
oid – An ObjectIdentifier instance.

Returns
A list of NameAttribute instances that match the OID provided. If nothing matches an
empty list will be returned.

>>> cert.subject.get_attributes_for_oid(NameOID.COMMON_NAME)
[<NameAttribute(oid=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value=
→˓'Good CA')>]

public_bytes()

Added in version 1.6.

Return bytes
The DER encoded name.

rfc4514_string(attr_name_overrides=None)
Added in version 2.5.

Changed in version 36.0.0: Added attr_name_overrides parameter.

Format the given name as a RFC 4514 Distinguished Name string, for example CN=mydomain.com,O=My
Org,C=US.

By default, attributes CN, L, ST, O, OU, C, STREET, DC, UID are represented by their short name. Unrecognized
attributes are formatted as dotted OID strings.

Example:

>>> name = x509.Name([
... x509.NameAttribute(NameOID.EMAIL_ADDRESS, "santa@north.pole"),
... x509.NameAttribute(NameOID.COMMON_NAME, "Santa Claus"),
...])
>>> name.rfc4514_string()
'CN=Santa Claus,1.2.840.113549.1.9.1=santa@north.pole'
>>> name.rfc4514_string({NameOID.EMAIL_ADDRESS: "E"})
'CN=Santa Claus,E=santa@north.pole'

Parameters
attr_name_overrides (Dict-like mapping from ObjectIdentifier to str) – Specify
custom OID to name mappings, which can be used to match vendor-specific extensions. See
NameOID for common attribute OIDs.

Return type
str

2.2. X.509 49

https://datatracker.ietf.org/doc/html/rfc4514.html
https://docs.python.org/3/library/stdtypes.html#str

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.x509.Version

Added in version 0.7.

An enumeration for X.509 versions.

v1

For version 1 X.509 certificates.

v3

For version 3 X.509 certificates.

class cryptography.x509.NameAttribute

Added in version 0.8.

An X.509 name consists of a list of RelativeDistinguishedName instances, which consist of a set of
NameAttribute instances.

oid

Type
ObjectIdentifier

The attribute OID.

value

Type
str or bytes

The value of the attribute. This will generally be a str, the only times it can be a bytes is when oid is
X500_UNIQUE_IDENTIFIER.

rfc4514_attribute_name

Added in version 35.0.0.

Type
str

The RFC 4514 short attribute name (for example “CN”), or the OID dotted string if a short name is un-
available.

rfc4514_string(attr_name_overrides=None)
Added in version 2.5.

Changed in version 36.0.0: Added attr_name_overrides parameter.

Return str
Format the given attribute as a RFC 4514 Distinguished Name string.

Parameters
attr_name_overrides (Dict-like mapping from ObjectIdentifier to str) – Specify
custom OID to name mappings, which can be used to match vendor-specific extensions.

class cryptography.x509.RelativeDistinguishedName(attributes)
Added in version 1.6.

A relative distinguished name is a non-empty set of name attributes. The object is iterable to get every attribute,
preserving the original order. Passing duplicate attributes to the constructor raises ValueError.

get_attributes_for_oid(oid)

Parameters
oid – An ObjectIdentifier instance.

50 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#str
https://datatracker.ietf.org/doc/html/rfc4514.html
https://datatracker.ietf.org/doc/html/rfc4514.html

Cryptography Documentation, Release 43.0.0.dev1

Returns
A list of NameAttribute instances that match the OID provided. The list should contain
zero or one values.

rfc4514_string(attr_name_overrides=None)
Added in version 2.5.

Changed in version 36.0.0: Added attr_name_overrides parameter.

Return str
Format the given RDN set as a RFC 4514 Distinguished Name string.

Parameters
attr_name_overrides (Dict-like mapping from ObjectIdentifier to str) – Specify
custom OID to name mappings, which can be used to match vendor-specific extensions.

class cryptography.x509.ObjectIdentifier

Added in version 0.8.

Object identifiers (frequently seen abbreviated as OID) identify the type of a value (see: NameAttribute).

dotted_string

Type
str

The dotted string value of the OID (e.g. "2.5.4.3")

General Name Classes

class cryptography.x509.GeneralName

Added in version 0.9.

This is the generic interface that all the following classes are registered against.

class cryptography.x509.RFC822Name(value)
Added in version 0.9.

Changed in version 3.1: U-label support has been removed. Encode them to A-label before use.

This corresponds to an email address. For example, user@example.com.

Parameters
value – The email address. If the address contains an internationalized domain name then it
must be encoded to an A-label string before being passed.

Raises
ValueError – If the provided string is not an A-label.

value

Type
str

class cryptography.x509.DNSName(value)
Added in version 0.9.

Changed in version 3.1: U-label support has been removed. Encode them to A-label before use.

This corresponds to a domain name. For example, cryptography.io.

2.2. X.509 51

https://datatracker.ietf.org/doc/html/rfc4514.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

Cryptography Documentation, Release 43.0.0.dev1

Parameters
value – The domain name. If it is an internationalized domain name then it must be encoded to
an A-label string before being passed.

Raises
ValueError – If the provided string is not an A-label.

type
str

value

Type
str

class cryptography.x509.DirectoryName(value)
Added in version 0.9.

This corresponds to a directory name.

value

Type
Name

class cryptography.x509.UniformResourceIdentifier(value)
Added in version 0.9.

Changed in version 3.1: U-label support has been removed. Encode them to A-label before use.

This corresponds to a uniform resource identifier. For example, https://cryptography.io.

Parameters
value – The URI. If it contains an internationalized domain name then it must be encoded to an
A-label string before being passed.

Raises
ValueError – If the provided string is not an A-label.

value

Type
str

class cryptography.x509.IPAddress(value)
Added in version 0.9.

This corresponds to an IP address.

value

Type
IPv4Address, IPv6Address, IPv4Network, or IPv6Network.

class cryptography.x509.RegisteredID(value)
Added in version 0.9.

This corresponds to a registered ID.

value

Type
ObjectIdentifier

52 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Network
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Network

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.x509.OtherName(type_id, value)
Added in version 1.0.

This corresponds to an otherName. An otherName has a type identifier and a value represented in binary DER
format.

type_id

Type
ObjectIdentifier

value

Type
bytes

X.509 Extensions

class cryptography.x509.Extensions

Added in version 0.9.

An X.509 Extensions instance is an ordered list of extensions. The object is iterable to get every extension.

get_extension_for_oid(oid)

Parameters
oid – An ObjectIdentifier instance.

Returns
An instance of Extension.

Raises
cryptography.x509.ExtensionNotFound – If the certificate does not have the extension
requested.

>>> from cryptography.x509.oid import ExtensionOID
>>> cert.extensions.get_extension_for_oid(ExtensionOID.BASIC_CONSTRAINTS)
<Extension(oid=<ObjectIdentifier(oid=2.5.29.19, name=basicConstraints)>,␣
→˓critical=True, value=<BasicConstraints(ca=True, path_length=None)>)>

get_extension_for_class(extclass)
Added in version 1.1.

Parameters
extclass – An extension class.

Returns
An instance of Extension.

Raises
cryptography.x509.ExtensionNotFound – If the certificate does not have the extension
requested.

>>> from cryptography import x509
>>> cert.extensions.get_extension_for_class(x509.BasicConstraints)
<Extension(oid=<ObjectIdentifier(oid=2.5.29.19, name=basicConstraints)>,␣
→˓critical=True, value=<BasicConstraints(ca=True, path_length=None)>)>

2.2. X.509 53

https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.x509.Extension

Added in version 0.9.

oid

Type
ObjectIdentifier

One of the ExtensionOID OIDs.

critical

Type
bool

Determines whether a given extension is critical or not. RFC 5280 requires that “A certificate-using system
MUST reject the certificate if it encounters a critical extension it does not recognize or a critical extension
that contains information that it cannot process”.

value

Returns an instance of the extension type corresponding to the OID.

class cryptography.x509.ExtensionType

Added in version 1.0.

This is the interface against which all the following extension types are registered.

oid

Type
ObjectIdentifier

Returns the OID associated with the given extension type.

public_bytes()

Added in version 36.0.0.

Return bytes
A bytes string representing the extension’s DER encoded value.

class cryptography.x509.KeyUsage(digital_signature, content_commitment, key_encipherment,
data_encipherment, key_agreement, key_cert_sign, crl_sign,
encipher_only, decipher_only)

Added in version 0.9.

The key usage extension defines the purpose of the key contained in the certificate. The usage restriction might
be employed when a key that could be used for more than one operation is to be restricted.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns KEY_USAGE.

digital_signature

Type
bool

This purpose is set to true when the subject public key is used for verifying digital signatures, other than
signatures on certificates (key_cert_sign) and CRLs (crl_sign).

54 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#bool
https://datatracker.ietf.org/doc/html/rfc5280.html
https://docs.python.org/3/library/functions.html#bool

Cryptography Documentation, Release 43.0.0.dev1

content_commitment

Type
bool

This purpose is set to true when the subject public key is used for verifying digital signatures, other than
signatures on certificates (key_cert_sign) and CRLs (crl_sign). It is used to provide a non-repudiation
service that protects against the signing entity falsely denying some action. In the case of later conflict, a
reliable third party may determine the authenticity of the signed data. This was called non_repudiation
in older revisions of the X.509 specification.

key_encipherment

Type
bool

This purpose is set to true when the subject public key is used for enciphering private or secret keys.

data_encipherment

Type
bool

This purpose is set to true when the subject public key is used for directly enciphering raw user data without
the use of an intermediate symmetric cipher.

key_agreement

Type
bool

This purpose is set to true when the subject public key is used for key agreement. For example, when a
Diffie-Hellman key is to be used for key management, then this purpose is set to true.

key_cert_sign

Type
bool

This purpose is set to true when the subject public key is used for verifying signatures on public key cer-
tificates. If this purpose is set to true then ca must be true in the BasicConstraints extension.

crl_sign

Type
bool

This purpose is set to true when the subject public key is used for verifying signatures on certificate revo-
cation lists.

encipher_only

Type
bool

When this purposes is set to true and the key_agreement purpose is also set, the subject public key may
be used only for enciphering data while performing key agreement.

Raises
ValueError – This is raised if accessed when key_agreement is false.

2.2. X.509 55

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

decipher_only

Type
bool

When this purposes is set to true and the key_agreement purpose is also set, the subject public key may
be used only for deciphering data while performing key agreement.

Raises
ValueError – This is raised if accessed when key_agreement is false.

class cryptography.x509.BasicConstraints(ca, path_length)
Added in version 0.9.

Basic constraints is an X.509 extension type that defines whether a given certificate is allowed to sign additional
certificates and what path length restrictions may exist.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns BASIC_CONSTRAINTS.

ca

Type
bool

Whether the certificate can sign certificates.

path_length

Type
int or None

The maximum path length for certificates subordinate to this certificate. This attribute only has meaning if
ca is true. If ca is true then a path length of None means there’s no restriction on the number of subordinate
CAs in the certificate chain. If it is zero or greater then it defines the maximum length for a subordinate
CA’s certificate chain. For example, a path_length of 1 means the certificate can sign a subordinate CA,
but the subordinate CA is not allowed to create subordinates with ca set to true.

class cryptography.x509.ExtendedKeyUsage(usages)
Added in version 0.9.

This extension indicates one or more purposes for which the certified public key may be used, in addition to or
in place of the basic purposes indicated in the key usage extension. The object is iterable to obtain the list of
ExtendedKeyUsageOID OIDs present.

Parameters
usages (list) – A list of ExtendedKeyUsageOID OIDs.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns EXTENDED_KEY_USAGE.

56 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.x509.OCSPNoCheck

Added in version 1.0.

This presence of this extension indicates that an OCSP client can trust a responder for the lifetime of the respon-
der’s certificate. CAs issuing such a certificate should realize that a compromise of the responder’s key is as
serious as the compromise of a CA key used to sign CRLs, at least for the validity period of this certificate. CA’s
may choose to issue this type of certificate with a very short lifetime and renew it frequently. This extension is
only relevant when the certificate is an authorized OCSP responder.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns OCSP_NO_CHECK .

class cryptography.x509.TLSFeature(features)
Added in version 2.1.

The TLS Feature extension is defined in RFC 7633 and is used in certificates for OCSP Must-Staple. The object
is iterable to get every element.

Parameters
features (list) – A list of features to enable from the TLSFeatureType enum. At this time
only status_request or status_request_v2 are allowed.

oid

Type
ObjectIdentifier

Returns TLS_FEATURE.

class cryptography.x509.TLSFeatureType

Added in version 2.1.

An enumeration of TLS Feature types.

status_request

This feature type is defined in RFC 6066 and, when embedded in an X.509 certificate, signals to the client
that it should require a stapled OCSP response in the TLS handshake. Commonly known as OCSP Must-
Staple in certificates.

status_request_v2

This feature type is defined in RFC 6961. This value is not commonly used and if you want to enable OCSP
Must-Staple you should use status_request.

class cryptography.x509.NameConstraints(permitted_subtrees, excluded_subtrees)
Added in version 1.0.

The name constraints extension, which only has meaning in a CA certificate, defines a name space within which
all subject names in certificates issued beneath the CA certificate must (or must not) be in. For specific details
on the way this extension should be processed see RFC 5280.

oid

Added in version 1.0.

Type
ObjectIdentifier

2.2. X.509 57

https://datatracker.ietf.org/doc/html/rfc7633.html
https://docs.python.org/3/library/stdtypes.html#list
https://datatracker.ietf.org/doc/html/rfc6066.html
https://datatracker.ietf.org/doc/html/rfc6961.html
https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

Returns NAME_CONSTRAINTS.

permitted_subtrees

Type
list of GeneralName objects or None

The set of permitted name patterns. If a name matches this and an element in excluded_subtrees it is
invalid. At least one of permitted_subtrees and excluded_subtrees will be non-None.

excluded_subtrees

Type
list of GeneralName objects or None

Any name matching a restriction in the excluded_subtrees field is invalid regardless of information ap-
pearing in the permitted_subtrees. At least one of permitted_subtrees and excluded_subtrees
will be non-None.

class cryptography.x509.AuthorityKeyIdentifier(key_identifier, authority_cert_issuer,
authority_cert_serial_number)

Added in version 0.9.

The authority key identifier extension provides a means of identifying the public key corresponding to the private
key used to sign a certificate. This extension is typically used to assist in determining the appropriate certificate
chain. For more information about generation and use of this extension see RFC 5280 section 4.2.1.1.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns AUTHORITY_KEY_IDENTIFIER .

key_identifier

Type
bytes

A value derived from the public key used to verify the certificate’s signature.

authority_cert_issuer

Type
A list of GeneralName instances or None

The GeneralName (one or multiple) of the issuer’s issuer.

authority_cert_serial_number

Type
int or None

The serial number of the issuer’s issuer.

classmethod from_issuer_public_key(public_key)
Added in version 1.0.

Note: This method should be used if the issuer certificate does not contain a SubjectKeyIdentifier.
Otherwise, use from_issuer_subject_key_identifier().

58 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.1
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

Creates a new AuthorityKeyIdentifier instance using the public key provided to generate the appropri-
ate digest. This should be the issuer’s public key. The resulting object will contain key_identifier,
but authority_cert_issuer and authority_cert_serial_number will be None. The generated
key_identifier is the SHA1 hash of the subjectPublicKey ASN.1 bit string. This is the first rec-
ommendation in RFC 5280 section 4.2.1.2.

Parameters
public_key – One of CertificateIssuerPublicKeyTypes.

>>> from cryptography import x509
>>> issuer_cert = x509.load_pem_x509_certificate(pem_data)
>>> x509.AuthorityKeyIdentifier.from_issuer_public_key(issuer_cert.public_key())
<AuthorityKeyIdentifier(key_identifier=b'X\x01\x84$\x1b\xbc+R\x94J=\xa5\x10r\
→˓x14Q\xf5\xaf:\xc9', authority_cert_issuer=None, authority_cert_serial_
→˓number=None)>

classmethod from_issuer_subject_key_identifier(ski)
Added in version 1.3.

Note: This method should be used if the issuer certificate contains a SubjectKeyIdentifier. Other-
wise, use from_issuer_public_key().

Creates a new AuthorityKeyIdentifier instance using the SubjectKeyIdentifier from the issuer cer-
tificate. The resulting object will contain key_identifier, but authority_cert_issuer and
authority_cert_serial_number will be None.

Parameters
ski – The SubjectKeyIdentifier from the issuer certificate.

>>> from cryptography import x509
>>> issuer_cert = x509.load_pem_x509_certificate(pem_data)
>>> ski_ext = issuer_cert.extensions.get_extension_for_class(x509.
→˓SubjectKeyIdentifier)
>>> x509.AuthorityKeyIdentifier.from_issuer_subject_key_identifier(ski_ext.
→˓value)
<AuthorityKeyIdentifier(key_identifier=b'X\x01\x84$\x1b\xbc+R\x94J=\xa5\x10r\
→˓x14Q\xf5\xaf:\xc9', authority_cert_issuer=None, authority_cert_serial_
→˓number=None)>

class cryptography.x509.SubjectKeyIdentifier(digest)
Added in version 0.9.

The subject key identifier extension provides a means of identifying certificates that contain a particular public
key.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns SUBJECT_KEY_IDENTIFIER .

key_identifier

Added in version 35.0.0.

2.2. X.509 59

https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

Type
bytes

The binary value of the identifier.

digest

Type
bytes

The binary value of the identifier. An alias of key_identifier.

classmethod from_public_key(public_key)
Added in version 1.0.

Creates a new SubjectKeyIdentifier instance using the public key provided to generate the appropriate di-
gest. This should be the public key that is in the certificate. The generated digest is the SHA1 hash of the
subjectPublicKey ASN.1 bit string. This is the first recommendation in RFC 5280 section 4.2.1.2.

Parameters
public_key – One of CertificatePublicKeyTypes.

>>> from cryptography import x509
>>> csr = x509.load_pem_x509_csr(pem_req_data)
>>> x509.SubjectKeyIdentifier.from_public_key(csr.public_key())
<SubjectKeyIdentifier(digest=b'\x8c"\x98\xe2\xb5\xbf]\xe8*2\xf8\xd2\'?\x00\xd2\
→˓xc7#\xe4c')>

class cryptography.x509.SubjectAlternativeName(general_names)
Added in version 0.9.

Subject alternative name is an X.509 extension that provides a list of general name instances that provide a set
of identities for which the certificate is valid. The object is iterable to get every element.

Parameters
general_names (list) – A list of GeneralName instances.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns SUBJECT_ALTERNATIVE_NAME.

get_values_for_type(type)

Parameters
type – A GeneralName instance. This is one of the general name classes.

Returns
A list of values extracted from the matched general names. The type of the returned values
depends on the GeneralName.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes
>>> cert = x509.load_pem_x509_certificate(cryptography_cert_pem)
>>> # Get the subjectAltName extension from the certificate
>>> ext = cert.extensions.get_extension_for_oid(ExtensionOID.SUBJECT_
→˓ALTERNATIVE_NAME)

(continues on next page)

60 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc5280.html
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> # Get the dNSName entries from the SAN extension
>>> ext.value.get_values_for_type(x509.DNSName)
['www.cryptography.io', 'cryptography.io']

class cryptography.x509.IssuerAlternativeName(general_names)
Added in version 1.0.

Issuer alternative name is an X.509 extension that provides a list of general name instances that provide a set of
identities for the certificate issuer. The object is iterable to get every element.

Parameters
general_names (list) – A list of GeneralName instances.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns ISSUER_ALTERNATIVE_NAME.

get_values_for_type(type)

Parameters
type – A GeneralName instance. This is one of the general name classes.

Returns
A list of values extracted from the matched general names.

class cryptography.x509.PrecertificateSignedCertificateTimestamps(scts)
Added in version 2.0.

This extension contains SignedCertificateTimestamp instances which were issued for the pre-certificate
corresponding to this certificate. These can be used to verify that the certificate is included in a public Certificate
Transparency log.

It is an iterable containing one or more SignedCertificateTimestamp objects.

Parameters
scts (list) – A list of SignedCertificateTimestamp objects.

oid

Type
ObjectIdentifier

Returns PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS.

class cryptography.x509.PrecertPoison

Added in version 2.4.

This extension indicates that the certificate should not be treated as a certificate for the purposes of validation,
but is instead for submission to a certificate transparency log in order to obtain SCTs which will be embedded in
a PrecertificateSignedCertificateTimestamps extension on the final certificate.

oid

Type
ObjectIdentifier

Returns PRECERT_POISON.

2.2. X.509 61

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.x509.SignedCertificateTimestamps(scts)
Added in version 3.0.

This extension contains SignedCertificateTimestamp instances. These can be used to verify that the certifi-
cate is included in a public Certificate Transparency log. This extension is only found in OCSP responses. For
SCTs in an X.509 certificate see PrecertificateSignedCertificateTimestamps.

It is an iterable containing one or more SignedCertificateTimestamp objects.

Parameters
scts (list) – A list of SignedCertificateTimestamp objects.

oid

Type
ObjectIdentifier

Returns SIGNED_CERTIFICATE_TIMESTAMPS.

class cryptography.x509.DeltaCRLIndicator(crl_number)
Added in version 2.1.

The delta CRL indicator is a CRL extension that identifies a CRL as being a delta CRL. Delta CRLs contain
updates to revocation information previously distributed, rather than all the information that would appear in a
complete CRL.

Parameters
crl_number (int) – The CRL number of the complete CRL that the delta CRL is updating.

oid

Type
ObjectIdentifier

Returns DELTA_CRL_INDICATOR .

crl_number

Type
int

class cryptography.x509.AuthorityInformationAccess(descriptions)
Added in version 0.9.

The authority information access extension indicates how to access information and services for the issuer of the
certificate in which the extension appears. Information and services may include online validation services (such
as OCSP) and issuer data. It is an iterable, containing one or more AccessDescription instances.

Parameters
descriptions (list) – A list of AccessDescription objects.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns AUTHORITY_INFORMATION_ACCESS.

62 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.x509.SubjectInformationAccess(descriptions)
Added in version 3.0.

The subject information access extension indicates how to access information and services for the subject of
the certificate in which the extension appears. When the subject is a CA, information and services may include
certificate validation services and CA policy data. When the subject is an end entity, the information describes the
type of services offered and how to access them. It is an iterable, containing one or more AccessDescription
instances.

Parameters
descriptions (list) – A list of AccessDescription objects.

oid

Type
ObjectIdentifier

Returns SUBJECT_INFORMATION_ACCESS.

class cryptography.x509.AccessDescription(access_method, access_location)
Added in version 0.9.

access_method

Type
ObjectIdentifier

The access method defines what the access_location means. It must be OCSP or CA_ISSUERS
when used with AuthorityInformationAccess or CA_REPOSITORY when used with
SubjectInformationAccess.

If it is OCSP the access location will be where to obtain OCSP information for the certificate. If it is
CA_ISSUERS the access location will provide additional information about the issuing certificate. Finally,
if it is CA_REPOSITORY the access location will be the location of the CA’s repository.

access_location

Type
GeneralName

Where to access the information defined by the access method.

class cryptography.x509.FreshestCRL(distribution_points)
Added in version 2.1.

The freshest CRL extension (also known as Delta CRL Distribution Point) identifies how delta CRL information
is obtained. It is an iterable, containing one or more DistributionPoint instances.

Parameters
distribution_points (list) – A list of DistributionPoint instances.

oid

Type
ObjectIdentifier

Returns FRESHEST_CRL.

class cryptography.x509.CRLDistributionPoints(distribution_points)
Added in version 0.9.

The CRL distribution points extension identifies how CRL information is obtained. It is an iterable, containing
one or more DistributionPoint instances.

2.2. X.509 63

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

Parameters
distribution_points (list) – A list of DistributionPoint instances.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns CRL_DISTRIBUTION_POINTS.

class cryptography.x509.DistributionPoint(full_name, relative_name, reasons, crl_issuer)
Added in version 0.9.

full_name

Type
list of GeneralName instances or None

This field describes methods to retrieve the CRL. At most one of full_name or relative_name will be
non-None.

relative_name

Type
RelativeDistinguishedName or None

This field describes methods to retrieve the CRL relative to the CRL issuer. At most one of full_name or
relative_name will be non-None.

Changed in version 1.6: Changed from Name to RelativeDistinguishedName.

crl_issuer

Type
list of GeneralName instances or None

Information about the issuer of the CRL.

reasons

Type
frozenset of ReasonFlags or None

The reasons a given distribution point may be used for when performing revocation checks.

class cryptography.x509.ReasonFlags

Added in version 0.9.

An enumeration for CRL reasons.

unspecified

It is unspecified why the certificate was revoked. This reason cannot be used as a reason flag in a
DistributionPoint.

key_compromise

This reason indicates that the private key was compromised.

ca_compromise

This reason indicates that the CA issuing the certificate was compromised.

64 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

affiliation_changed

This reason indicates that the subject’s name or other information has changed.

superseded

This reason indicates that a certificate has been superseded.

cessation_of_operation

This reason indicates that the certificate is no longer required.

certificate_hold

This reason indicates that the certificate is on hold.

privilege_withdrawn

This reason indicates that the privilege granted by this certificate have been withdrawn.

aa_compromise

When an attribute authority has been compromised.

remove_from_crl

This reason indicates that the certificate was on hold and should be removed from the CRL. This reason
cannot be used as a reason flag in a DistributionPoint.

class cryptography.x509.InhibitAnyPolicy(skip_certs)
Added in version 1.0.

The inhibit anyPolicy extension indicates that the special OID ANY_POLICY , is not considered an explicit match
for other CertificatePolicies except when it appears in an intermediate self-issued CA certificate. The value
indicates the number of additional non-self-issued certificates that may appear in the path before ANY_POLICY
is no longer permitted. For example, a value of one indicates that ANY_POLICY may be processed in certificates
issued by the subject of this certificate, but not in additional certificates in the path.

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns INHIBIT_ANY_POLICY .

skip_certs

Type
int

class cryptography.x509.PolicyConstraints

Added in version 1.3.

The policy constraints extension is used to inhibit policy mapping or require that each certificate in a chain
contain an acceptable policy identifier. For more information about the use of this extension see RFC 5280.

oid

Type
ObjectIdentifier

Returns POLICY_CONSTRAINTS.

require_explicit_policy

Type
int or None

2.2. X.509 65

https://docs.python.org/3/library/functions.html#int
https://datatracker.ietf.org/doc/html/rfc5280.html
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

If this field is not None, the value indicates the number of additional certificates that may appear in the chain
before an explicit policy is required for the entire path. When an explicit policy is required, it is necessary
for all certificates in the chain to contain an acceptable policy identifier in the certificate policies extension.
An acceptable policy identifier is the identifier of a policy required by the user of the certification path or
the identifier of a policy that has been declared equivalent through policy mapping.

inhibit_policy_mapping

Type
int or None

If this field is not None, the value indicates the number of additional certificates that may appear in the chain
before policy mapping is no longer permitted. For example, a value of one indicates that policy mapping
may be processed in certificates issued by the subject of this certificate, but not in additional certificates in
the chain.

class cryptography.x509.CRLNumber(crl_number)
Added in version 1.2.

The CRL number is a CRL extension that conveys a monotonically increasing sequence number for a given CRL
scope and CRL issuer. This extension allows users to easily determine when a particular CRL supersedes another
CRL. RFC 5280 requires that this extension be present in conforming CRLs.

oid

Type
ObjectIdentifier

Returns CRL_NUMBER .

crl_number

Type
int

class cryptography.x509.IssuingDistributionPoint(full_name, relative_name, only_contains_user_certs,
only_contains_ca_certs, only_some_reasons,
indirect_crl, only_contains_attribute_certs)

Added in version 2.5.

Issuing distribution point is a CRL extension that identifies the CRL distribution point and scope for a partic-
ular CRL. It indicates whether the CRL covers revocation for end entity certificates only, CA certificates only,
attribute certificates only, or a limited set of reason codes. For specific details on the way this extension should
be processed see RFC 5280.

oid

Type
ObjectIdentifier

Returns ISSUING_DISTRIBUTION_POINT.

only_contains_user_certs

Type
bool

Set to True if the CRL this extension is embedded within only contains information about user certificates.

66 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://datatracker.ietf.org/doc/html/rfc5280.html
https://docs.python.org/3/library/functions.html#int
https://datatracker.ietf.org/doc/html/rfc5280.html
https://docs.python.org/3/library/functions.html#bool

Cryptography Documentation, Release 43.0.0.dev1

only_contains_ca_certs

Type
bool

Set to True if the CRL this extension is embedded within only contains information about CA certificates.

indirect_crl

Type
bool

Set to True if the CRL this extension is embedded within includes certificates issued by one or more
authorities other than the CRL issuer.

only_contains_attribute_certs

Type
bool

Set to True if the CRL this extension is embedded within only contains information about attribute certifi-
cates.

only_some_reasons

Type
frozenset of ReasonFlags or None

The reasons for which the issuing distribution point is valid. None indicates that it is valid for all reasons.

full_name

Type
list of GeneralName instances or None

This field describes methods to retrieve the CRL. At most one of full_name or relative_name will be
non-None.

relative_name

Type
RelativeDistinguishedName or None

This field describes methods to retrieve the CRL relative to the CRL issuer. At most one of full_name or
relative_name will be non-None.

class cryptography.x509.UnrecognizedExtension

Added in version 1.2.

A generic extension class used to hold the raw value of extensions that cryptography does not know how to
parse. This can also be used when creating new certificates, CRLs, or OCSP requests and responses to encode
extensions that cryptography does not know how to generate.

oid

Type
ObjectIdentifier

Returns the OID associated with this extension.

value

Type
bytes

2.2. X.509 67

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Returns the DER encoded bytes payload of the extension.

class cryptography.x509.MSCertificateTemplate(template_id, major_version, minor_version)
Added in version 41.0.0.

The Microsoft certificate template extension is a proprietary Microsoft PKI extension that is used to provide
information about the template associated with the certificate.

oid

Type
ObjectIdentifier

Returns MS_CERTIFICATE_TEMPLATE.

template_id

Type
ObjectIdentifier

major_version

Type
int or None

minor_version

Type
int or None

class cryptography.x509.CertificatePolicies(policies)
Added in version 0.9.

The certificate policies extension is an iterable, containing one or more PolicyInformation instances.

Parameters
policies (list) – A list of PolicyInformation instances.

As an example of how CertificatePolicies might be used, if you wanted to check if a certificated contained
the CAB Forum’s “domain-validated” policy, you might write code like:

def contains_domain_validated(policies):
return any(

policy.policy_identifier.dotted_string == "2.23.140.1.2.1"
for policy in policies

)

oid

Added in version 1.0.

Type
ObjectIdentifier

Returns CERTIFICATE_POLICIES.

68 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

Certificate Policies Classes

These classes may be present within a CertificatePolicies instance.

class cryptography.x509.PolicyInformation(policy_identifier, policy_qualifiers)
Added in version 0.9.

Contains a policy identifier and an optional list of qualifiers.

policy_identifier

Type
ObjectIdentifier

policy_qualifiers

Type
list

A list consisting of str and/or UserNotice objects. If the value is str it is a pointer to the practice
statement published by the certificate authority. If it is a user notice it is meant for display to the relying
party when the certificate is used.

class cryptography.x509.UserNotice(notice_reference, explicit_text)
Added in version 0.9.

User notices are intended for display to a relying party when a certificate is used. In practice, few if any UIs
expose this data and it is a rarely encoded component.

notice_reference

Type
NoticeReference or None

The notice reference field names an organization and identifies, by number, a particular statement prepared
by that organization.

explicit_text

This field includes an arbitrary textual statement directly in the certificate.

Type
str

class cryptography.x509.NoticeReference(organization, notice_numbers)
Notice reference can name an organization and provide information about notices related to the certificate. For
example, it might identify the organization name and notice number 1. Application software could have a notice
file containing the current set of notices for the named organization; the application would then extract the notice
text from the file and display it. In practice this is rarely seen.

Added in version 0.9.

organization

Type
str

notice_numbers

Type
list

A list of integers.

2.2. X.509 69

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

CRL Entry Extensions

These extensions are only valid within a RevokedCertificate object.

class cryptography.x509.CertificateIssuer(general_names)
Added in version 1.2.

The certificate issuer is an extension that is only valid inside RevokedCertificate objects. If the indirectCRL
property of the parent CRL’s IssuingDistributionPoint extension is set, then this extension identifies the certificate
issuer associated with the revoked certificate. The object is iterable to get every element.

Parameters
general_names (list) – A list of GeneralName instances.

oid

Type
ObjectIdentifier

Returns CERTIFICATE_ISSUER .

get_values_for_type(type)

Parameters
type – A GeneralName instance. This is one of the general name classes.

Returns
A list of values extracted from the matched general names. The type of the returned values
depends on the GeneralName.

class cryptography.x509.CRLReason(reason)
Added in version 1.2.

CRL reason (also known as reasonCode) is an extension that is only valid inside RevokedCertificate objects.
It identifies a reason for the certificate revocation.

Parameters
reason – An element from ReasonFlags.

oid

Type
ObjectIdentifier

Returns CRL_REASON.

reason

Type
An element from ReasonFlags

class cryptography.x509.InvalidityDate(invalidity_date)
Added in version 1.2.

Invalidity date is an extension that is only valid inside RevokedCertificate objects. It provides the date on
which it is known or suspected that the private key was compromised or that the certificate otherwise became
invalid. This date may be earlier than the revocation date in the CRL entry, which is the date at which the CA
processed the revocation.

Parameters
invalidity_date – The datetime.datetime when it is known or suspected that the private
key was compromised.

70 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.datetime

Cryptography Documentation, Release 43.0.0.dev1

oid

Type
ObjectIdentifier

Returns INVALIDITY_DATE.

invalidity_date

Type
datetime.datetime

invalidity_date_utc

Added in version 43.0.0.

Type
datetime.datetime

The invalidity date in UTC as a timezone-aware datetime object.

OCSP Extensions

class cryptography.x509.OCSPNonce(nonce)
Added in version 2.4.

OCSP nonce is an extension that is only valid inside OCSPRequest and OCSPResponse objects. The nonce
cryptographically binds a request and a response to prevent replay attacks. In practice nonces are rarely used in
OCSP due to the desire to precompute OCSP responses at large scale.

oid

Type
ObjectIdentifier

Returns NONCE.

nonce

Type
bytes

class cryptography.x509.OCSPAcceptableResponses(response)
Added in version 41.0.0.

OCSP acceptable responses is an extension that is only valid inside OCSPRequest objects. This allows an OCSP
client to tell the server what types of responses it supports. In practice this is rarely used, because there is only
one kind of OCSP response in wide use.

oid

Type
ObjectIdentifier

Returns ACCEPTABLE_RESPONSES.

nonce

Type
bytes

2.2. X.509 71

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

X.509 Request Attributes

class cryptography.x509.Attributes

Added in version 36.0.0.

An Attributes instance is an ordered list of attributes. The object is iterable to get every attribute. Each returned
element is an Attribute.

get_attribute_for_oid(oid)
Added in version 36.0.0.

Parameters
oid – An ObjectIdentifier instance.

Returns
The Attribute or an exception if not found.

Raises
cryptography.x509.AttributeNotFound – If the request does not have the attribute re-
quested.

class cryptography.x509.Attribute

Added in version 36.0.0.

An attribute associated with an X.509 request.

oid

Type
ObjectIdentifier

Returns the object identifier for the attribute.

value

Type
bytes

Returns the value of the attribute.

Object Identifiers

X.509 elements are frequently identified by ObjectIdentifier instances. The following common OIDs are available
as constants.

class cryptography.x509.oid.NameOID

These OIDs are typically seen in X.509 names.

Added in version 1.0.

COMMON_NAME

Corresponds to the dotted string "2.5.4.3". Historically the domain name would be encoded here for
server certificates. RFC 2818 deprecates this practice and names of that type should now be located in a
SubjectAlternativeName extension.

COUNTRY_NAME

Corresponds to the dotted string "2.5.4.6".

LOCALITY_NAME

Corresponds to the dotted string "2.5.4.7".

72 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc2818.html

Cryptography Documentation, Release 43.0.0.dev1

STATE_OR_PROVINCE_NAME

Corresponds to the dotted string "2.5.4.8".

STREET_ADDRESS

Added in version 1.6.

Corresponds to the dotted string "2.5.4.9".

ORGANIZATION_IDENTIFIER

Added in version 42.0.0.

Corresponds to the dotted string "2.5.4.97".

ORGANIZATION_NAME

Corresponds to the dotted string "2.5.4.10".

ORGANIZATIONAL_UNIT_NAME

Corresponds to the dotted string "2.5.4.11".

SERIAL_NUMBER

Corresponds to the dotted string "2.5.4.5". This is distinct from the serial number of the certificate itself
(which can be obtained with serial_number).

SURNAME

Corresponds to the dotted string "2.5.4.4".

GIVEN_NAME

Corresponds to the dotted string "2.5.4.42".

TITLE

Corresponds to the dotted string "2.5.4.12".

INITIALS

Added in version 41.0.0.

Corresponds to the dotted string "2.5.4.43".

GENERATION_QUALIFIER

Corresponds to the dotted string "2.5.4.44".

X500_UNIQUE_IDENTIFIER

Added in version 1.6.

Corresponds to the dotted string "2.5.4.45".

DN_QUALIFIER

Corresponds to the dotted string "2.5.4.46". This specifies disambiguating information to add to the
relative distinguished name of an entry. See RFC 2256.

PSEUDONYM

Corresponds to the dotted string "2.5.4.65".

USER_ID

Added in version 1.6.

Corresponds to the dotted string "0.9.2342.19200300.100.1.1".

DOMAIN_COMPONENT

Corresponds to the dotted string "0.9.2342.19200300.100.1.25". A string holding one component of
a domain name. See RFC 4519.

2.2. X.509 73

https://datatracker.ietf.org/doc/html/rfc2256.html
https://datatracker.ietf.org/doc/html/rfc4519.html

Cryptography Documentation, Release 43.0.0.dev1

EMAIL_ADDRESS

Corresponds to the dotted string "1.2.840.113549.1.9.1".

JURISDICTION_COUNTRY_NAME

Corresponds to the dotted string "1.3.6.1.4.1.311.60.2.1.3".

JURISDICTION_LOCALITY_NAME

Corresponds to the dotted string "1.3.6.1.4.1.311.60.2.1.1".

JURISDICTION_STATE_OR_PROVINCE_NAME

Corresponds to the dotted string "1.3.6.1.4.1.311.60.2.1.2".

BUSINESS_CATEGORY

Corresponds to the dotted string "2.5.4.15".

POSTAL_ADDRESS

Added in version 1.6.

Corresponds to the dotted string "2.5.4.16".

POSTAL_CODE

Added in version 1.6.

Corresponds to the dotted string "2.5.4.17".

UNSTRUCTURED_NAME

Added in version 3.0.

Corresponds to the dotted string "1.2.840.113549.1.9.2".

class cryptography.x509.oid.SignatureAlgorithmOID

Added in version 1.0.

RSA_WITH_MD5

Corresponds to the dotted string "1.2.840.113549.1.1.4". This is an MD5 digest signed by an RSA
key.

RSA_WITH_SHA1

Corresponds to the dotted string "1.2.840.113549.1.1.5". This is a SHA1 digest signed by an RSA
key.

RSA_WITH_SHA224

Corresponds to the dotted string "1.2.840.113549.1.1.14". This is a SHA224 digest signed by an RSA
key.

RSA_WITH_SHA256

Corresponds to the dotted string "1.2.840.113549.1.1.11". This is a SHA256 digest signed by an RSA
key.

RSA_WITH_SHA384

Corresponds to the dotted string "1.2.840.113549.1.1.12". This is a SHA384 digest signed by an RSA
key.

RSA_WITH_SHA512

Corresponds to the dotted string "1.2.840.113549.1.1.13". This is a SHA512 digest signed by an RSA
key.

74 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

RSA_WITH_SHA3_224

Corresponds to the dotted string "2.16.840.1.101.3.4.3.13". This is a SHA3-224 digest signed by an
RSA key.

RSA_WITH_SHA3_256

Corresponds to the dotted string "2.16.840.1.101.3.4.3.14". This is a SHA3-256 digest signed by an
RSA key.

RSA_WITH_SHA3_384

Corresponds to the dotted string "2.16.840.1.101.3.4.3.15". This is a SHA3-384 digest signed by an
RSA key.

RSA_WITH_SHA3_512

Corresponds to the dotted string "2.16.840.1.101.3.4.3.16". This is a SHA3-512 digest signed by an
RSA key.

RSASSA_PSS

Added in version 2.3.

Corresponds to the dotted string "1.2.840.113549.1.1.10". This is signed by an RSA key using the
Probabilistic Signature Scheme (PSS) padding from RFC 4055. The hash function and padding are defined
by signature algorithm parameters.

ECDSA_WITH_SHA1

Corresponds to the dotted string "1.2.840.10045.4.1". This is a SHA1 digest signed by an ECDSA
key.

ECDSA_WITH_SHA224

Corresponds to the dotted string "1.2.840.10045.4.3.1". This is a SHA224 digest signed by an ECDSA
key.

ECDSA_WITH_SHA256

Corresponds to the dotted string "1.2.840.10045.4.3.2". This is a SHA256 digest signed by an ECDSA
key.

ECDSA_WITH_SHA384

Corresponds to the dotted string "1.2.840.10045.4.3.3". This is a SHA384 digest signed by an ECDSA
key.

ECDSA_WITH_SHA512

Corresponds to the dotted string "1.2.840.10045.4.3.4". This is a SHA512 digest signed by an ECDSA
key.

ECDSA_WITH_SHA3_224

Corresponds to the dotted string "2.16.840.1.101.3.4.3.9". This is a SHA3-224 digest signed by an
ECDSA key.

ECDSA_WITH_SHA3_256

Corresponds to the dotted string "2.16.840.1.101.3.4.3.10". This is a SHA3-256 digest signed by an
ECDSA key.

ECDSA_WITH_SHA3_384

Corresponds to the dotted string "2.16.840.1.101.3.4.3.11". This is a SHA3-384 digest signed by an
ECDSA key.

ECDSA_WITH_SHA3_512

Corresponds to the dotted string "2.16.840.1.101.3.4.3.12". This is a SHA3-512 digest signed by an
ECDSA key.

2.2. X.509 75

https://datatracker.ietf.org/doc/html/rfc4055.html

Cryptography Documentation, Release 43.0.0.dev1

DSA_WITH_SHA1

Corresponds to the dotted string "1.2.840.10040.4.3". This is a SHA1 digest signed by a DSA key.

DSA_WITH_SHA224

Corresponds to the dotted string "2.16.840.1.101.3.4.3.1". This is a SHA224 digest signed by a DSA
key.

DSA_WITH_SHA256

Corresponds to the dotted string "2.16.840.1.101.3.4.3.2". This is a SHA256 digest signed by a DSA
key.

DSA_WITH_SHA384

Added in version 36.0.0.

Corresponds to the dotted string "2.16.840.1.101.3.4.3.3". This is a SHA384 digest signed by a DSA
key.

DSA_WITH_SHA512

Added in version 36.0.0.

Corresponds to the dotted string "2.16.840.1.101.3.4.3.4". This is a SHA512 digest signed by a DSA
key.

ED25519

Added in version 2.8.

Corresponds to the dotted string "1.3.101.112". This is a signature using an ed25519 key.

ED448

Added in version 2.8.

Corresponds to the dotted string "1.3.101.113". This is a signature using an ed448 key.

class cryptography.x509.oid.ExtendedKeyUsageOID

Added in version 1.0.

SERVER_AUTH

Corresponds to the dotted string "1.3.6.1.5.5.7.3.1". This is used to denote that a certificate may be
used for TLS web server authentication.

CLIENT_AUTH

Corresponds to the dotted string "1.3.6.1.5.5.7.3.2". This is used to denote that a certificate may be
used for TLS web client authentication.

CODE_SIGNING

Corresponds to the dotted string "1.3.6.1.5.5.7.3.3". This is used to denote that a certificate may be
used for code signing.

EMAIL_PROTECTION

Corresponds to the dotted string "1.3.6.1.5.5.7.3.4". This is used to denote that a certificate may be
used for email protection.

TIME_STAMPING

Corresponds to the dotted string "1.3.6.1.5.5.7.3.8". This is used to denote that a certificate may be
used for time stamping.

OCSP_SIGNING

Corresponds to the dotted string "1.3.6.1.5.5.7.3.9". This is used to denote that a certificate may be
used for signing OCSP responses.

76 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

ANY_EXTENDED_KEY_USAGE

Added in version 2.0.

Corresponds to the dotted string "2.5.29.37.0". This is used to denote that a certificate may be used
for _any_ purposes. However, RFC 5280 additionally notes that applications that require the presence of
a particular purpose _MAY_ reject certificates that include the anyExtendedKeyUsage OID but not the
particular OID expected for the application. Therefore, the presence of this OID does not mean a given
application will accept the certificate for all purposes.

SMARTCARD_LOGON

Added in version 35.0.0.

Corresponds to the dotted string "1.3.6.1.4.1.311.20.2.2". This is used to denote that a certificate
may be used for PKINIT access on Windows.

KERBEROS_PKINIT_KDC

Added in version 35.0.0.

Corresponds to the dotted string "1.3.6.1.5.2.3.5". This is used to denote that a certificate may be
used as a Kerberos domain controller certificate authorizing PKINIT access. For more information see
RFC 4556.

IPSEC_IKE

Added in version 37.0.0.

Corresponds to the dotted string "1.3.6.1.5.5.7.3.17". This is used to denote that a certificate may be
assigned to an IPSEC SA, and can be used by the assignee to initiate an IPSec Internet Key Exchange. For
more information see RFC 4945.

CERTIFICATE_TRANSPARENCY

Added in version 38.0.0.

Corresponds to the dotted string "1.3.6.1.4.1.11129.2.4.4". This is used to denote that a certificate
may be used as a pre-certificate signing certificate for Certificate Transparency log operation purposes. For
more information see RFC 6962.

class cryptography.x509.oid.AuthorityInformationAccessOID

Added in version 1.0.

OCSP

Corresponds to the dotted string "1.3.6.1.5.5.7.48.1". Used as the identifier for OCSP data in
AccessDescription objects.

CA_ISSUERS

Corresponds to the dotted string "1.3.6.1.5.5.7.48.2". Used as the identifier for CA issuer data in
AccessDescription objects.

class cryptography.x509.oid.SubjectInformationAccessOID

Added in version 3.0.

CA_REPOSITORY

Corresponds to the dotted string "1.3.6.1.5.5.7.48.5". Used as the identifier for CA repository data
in AccessDescription objects.

class cryptography.x509.oid.CertificatePoliciesOID

Added in version 1.0.

CPS_QUALIFIER

Corresponds to the dotted string "1.3.6.1.5.5.7.2.1".

2.2. X.509 77

https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc4556.html
https://datatracker.ietf.org/doc/html/rfc4945.html
https://datatracker.ietf.org/doc/html/rfc6962.html

Cryptography Documentation, Release 43.0.0.dev1

CPS_USER_NOTICE

Corresponds to the dotted string "1.3.6.1.5.5.7.2.2".

ANY_POLICY

Corresponds to the dotted string "2.5.29.32.0".

class cryptography.x509.oid.ExtensionOID

Added in version 1.0.

BASIC_CONSTRAINTS

Corresponds to the dotted string "2.5.29.19". The identifier for the BasicConstraints extension type.

KEY_USAGE

Corresponds to the dotted string "2.5.29.15". The identifier for the KeyUsage extension type.

SUBJECT_ALTERNATIVE_NAME

Corresponds to the dotted string "2.5.29.17". The identifier for the SubjectAlternativeName exten-
sion type.

ISSUER_ALTERNATIVE_NAME

Corresponds to the dotted string "2.5.29.18". The identifier for the IssuerAlternativeName extension
type.

SUBJECT_KEY_IDENTIFIER

Corresponds to the dotted string "2.5.29.14". The identifier for the SubjectKeyIdentifier extension
type.

NAME_CONSTRAINTS

Corresponds to the dotted string "2.5.29.30". The identifier for the NameConstraints extension type.

CRL_DISTRIBUTION_POINTS

Corresponds to the dotted string "2.5.29.31". The identifier for the CRLDistributionPoints extension
type.

CERTIFICATE_POLICIES

Corresponds to the dotted string "2.5.29.32". The identifier for the CertificatePolicies extension
type.

AUTHORITY_KEY_IDENTIFIER

Corresponds to the dotted string "2.5.29.35". The identifier for the AuthorityKeyIdentifier exten-
sion type.

EXTENDED_KEY_USAGE

Corresponds to the dotted string "2.5.29.37". The identifier for the ExtendedKeyUsage extension type.

AUTHORITY_INFORMATION_ACCESS

Corresponds to the dotted string "1.3.6.1.5.5.7.1.1". The identifier for the
AuthorityInformationAccess extension type.

SUBJECT_INFORMATION_ACCESS

Added in version 3.0.

Corresponds to the dotted string "1.3.6.1.5.5.7.1.11". The identifier for the
SubjectInformationAccess extension type.

INHIBIT_ANY_POLICY

Corresponds to the dotted string "2.5.29.54". The identifier for the InhibitAnyPolicy extension type.

78 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

OCSP_NO_CHECK

Corresponds to the dotted string "1.3.6.1.5.5.7.48.1.5". The identifier for the OCSPNoCheck exten-
sion type.

TLS_FEATURE

Corresponds to the dotted string "1.3.6.1.5.5.7.1.24". The identifier for the TLSFeature extension
type.

CRL_NUMBER

Corresponds to the dotted string "2.5.29.20". The identifier for the CRLNumber extension type. This
extension only has meaning for certificate revocation lists.

DELTA_CRL_INDICATOR

Added in version 2.1.

Corresponds to the dotted string "2.5.29.27". The identifier for the DeltaCRLIndicator extension
type. This extension only has meaning for certificate revocation lists.

PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS

Added in version 1.9.

Corresponds to the dotted string "1.3.6.1.4.1.11129.2.4.2".

PRECERT_POISON

Added in version 2.4.

Corresponds to the dotted string "1.3.6.1.4.1.11129.2.4.3".

SIGNED_CERTIFICATE_TIMESTAMPS

Added in version 3.0.

Corresponds to the dotted string "1.3.6.1.4.1.11129.2.4.5".

POLICY_CONSTRAINTS

Corresponds to the dotted string "2.5.29.36". The identifier for the PolicyConstraints extension
type.

FRESHEST_CRL

Corresponds to the dotted string "2.5.29.46". The identifier for the FreshestCRL extension type.

ISSUING_DISTRIBUTION_POINT

Added in version 2.4.

Corresponds to the dotted string "2.5.29.28".

POLICY_MAPPINGS

Corresponds to the dotted string "2.5.29.33".

SUBJECT_DIRECTORY_ATTRIBUTES

Corresponds to the dotted string "2.5.29.9".

MS_CERTIFICATE_TEMPLATE

Added in version 41.0.0.

Corresponds to the dotted string "1.3.6.1.4.1.311.21.7".

class cryptography.x509.oid.CRLEntryExtensionOID

Added in version 1.2.

2.2. X.509 79

Cryptography Documentation, Release 43.0.0.dev1

CERTIFICATE_ISSUER

Corresponds to the dotted string "2.5.29.29".

CRL_REASON

Corresponds to the dotted string "2.5.29.21".

INVALIDITY_DATE

Corresponds to the dotted string "2.5.29.24".

class cryptography.x509.oid.OCSPExtensionOID

Added in version 2.4.

NONCE

Corresponds to the dotted string "1.3.6.1.5.5.7.48.1.2".

ACCEPTABLE_RESPONSES

Added in version 41.0.0.

Corresponds to the dotted string "1.3.6.1.5.5.7.48.1.4".

class cryptography.x509.oid.AttributeOID

Added in version 3.0.

CHALLENGE_PASSWORD

Corresponds to the dotted string "1.2.840.113549.1.9.7".

UNSTRUCTURED_NAME

Corresponds to the dotted string "1.2.840.113549.1.9.2".

class cryptography.x509.oid.PublicKeyAlgorithmOID

Added in version 43.0.0.

DSA

Corresponds to the dotted string "1.2.840.10040.4.1". This is a DSAPublicKey public key.

EC_PUBLIC_KEY

Corresponds to the dotted string "1.2.840.10045.2.1". This is a EllipticCurvePublicKey public
key.

RSAES_PKCS1_v1_5

Corresponds to the dotted string "1.2.840.113549.1.1.1". This is a RSAPublicKey public key with
PKCS1v15 padding.

RSASSA_PSS

Corresponds to the dotted string "1.2.840.113549.1.1.10". This is a RSAPublicKey public key with
PSS padding.

X25519

Corresponds to the dotted string "1.3.101.110". This is a X25519PublicKey public key.

X448

Corresponds to the dotted string "1.3.101.111". This is a X448PublicKey public key.

ED25519

Corresponds to the dotted string "1.3.101.112". This is a Ed25519PublicKey public key.

ED448

Corresponds to the dotted string "1.3.101.113". This is a Ed448PublicKey public key.

80 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Helper Functions

cryptography.x509.random_serial_number()

Added in version 1.6.

Generates a random serial number suitable for use when constructing certificates.

Exceptions

class cryptography.x509.InvalidVersion

This is raised when an X.509 certificate has an invalid version number.

parsed_version

Type
int

Returns the raw version that was parsed from the certificate.

class cryptography.x509.DuplicateExtension

This is raised when more than one X.509 extension of the same type is found within a certificate.

oid

Type
ObjectIdentifier

Returns the OID.

class cryptography.x509.ExtensionNotFound

This is raised when calling Extensions.get_extension_for_oid()with an extension OID that is not present
in the certificate.

oid

Type
ObjectIdentifier

Returns the OID.

class cryptography.x509.AttributeNotFound

This is raised when calling Attributes.get_attribute_for_oid()with an attribute OID that is not present
in the request.

oid

Type
ObjectIdentifier

Returns the OID.

class cryptography.x509.UnsupportedGeneralNameType

This is raised when a certificate contains an unsupported general name type in an extension.

type

Type
int

The integer value of the unsupported type. The complete list of types can be found in RFC 5280 section
4.2.1.6.

2.2. X.509 81

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.6
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.6

Cryptography Documentation, Release 43.0.0.dev1

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3 Primitives

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.1 Authenticated encryption

Authenticated encryption with associated data (AEAD) are encryption schemes which provide both confidentiality and
integrity for their ciphertext. They also support providing integrity for associated data which is not encrypted.

class cryptography.hazmat.primitives.ciphers.aead.ChaCha20Poly1305(key)
Added in version 2.0.

The ChaCha20Poly1305 construction is defined in RFC 7539 section 2.8. It is a stream cipher combined with a
MAC that offers strong integrity guarantees.

Parameters
key (bytes-like) – A 32-byte key. This must be kept secret.

Raises
cryptography.exceptions.UnsupportedAlgorithm – If the version of OpenSSL does not
support ChaCha20Poly1305.

>>> import os
>>> from cryptography.hazmat.primitives.ciphers.aead import ChaCha20Poly1305
>>> data = b"a secret message"
>>> aad = b"authenticated but unencrypted data"
>>> key = ChaCha20Poly1305.generate_key()
>>> chacha = ChaCha20Poly1305(key)
>>> nonce = os.urandom(12)
>>> ct = chacha.encrypt(nonce, data, aad)
>>> chacha.decrypt(nonce, ct, aad)
b'a secret message'

classmethod generate_key()

Securely generates a random ChaCha20Poly1305 key.

Returns bytes
A 32 byte key.

encrypt(nonce, data, associated_data)

82 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc7539.html

Cryptography Documentation, Release 43.0.0.dev1

Warning: Reuse of a nonce with a given key compromises the security of any message with that
nonce and key pair.

Encrypts the data provided and authenticates the associated_data. The output of this can be passed
directly to the decrypt method.

Parameters

• nonce (bytes-like) – A 12 byte value. NEVER REUSE A NONCE with a key.

• data (bytes-like) – The data to encrypt.

• associated_data (bytes-like) – Additional data that should be authenticated with the key,
but does not need to be encrypted. Can be None.

Returns bytes
The ciphertext bytes with the 16 byte tag appended.

Raises
OverflowError – If data or associated_data is larger than 231 - 1 bytes.

decrypt(nonce, data, associated_data)
Decrypts the data and authenticates the associated_data. If you called encrypt with
associated_data you must pass the same associated_data in decrypt or the integrity check
will fail.

Parameters

• nonce (bytes-like) – A 12 byte value. NEVER REUSE A NONCE with a key.

• data (bytes-like) – The data to decrypt (with tag appended).

• associated_data (bytes-like) – Additional data to authenticate. Can be None if none was
passed during encryption.

Returns bytes
The original plaintext.

Raises
cryptography.exceptions.InvalidTag – If the authentication tag doesn’t validate this
exception will be raised. This will occur when the ciphertext has been changed, but will also
occur when the key, nonce, or associated data are wrong.

class cryptography.hazmat.primitives.ciphers.aead.AESGCM(key)
Added in version 2.0.

The AES-GCM construction is composed of the AES block cipher utilizing Galois Counter Mode (GCM).

Parameters
key (bytes-like) – A 128, 192, or 256-bit key. This must be kept secret.

>>> import os
>>> from cryptography.hazmat.primitives.ciphers.aead import AESGCM
>>> data = b"a secret message"
>>> aad = b"authenticated but unencrypted data"
>>> key = AESGCM.generate_key(bit_length=128)
>>> aesgcm = AESGCM(key)
>>> nonce = os.urandom(12)
>>> ct = aesgcm.encrypt(nonce, data, aad)

(continues on next page)

2.3. Primitives 83

https://docs.python.org/3/library/exceptions.html#OverflowError

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> aesgcm.decrypt(nonce, ct, aad)
b'a secret message'

classmethod generate_key(bit_length)
Securely generates a random AES-GCM key.

Parameters
bit_length – The bit length of the key to generate. Must be 128, 192, or 256.

Returns bytes
The generated key.

encrypt(nonce, data, associated_data)

Warning: Reuse of a nonce with a given key compromises the security of any message with that
nonce and key pair.

Encrypts and authenticates the data provided as well as authenticating the associated_data. The output
of this can be passed directly to the decrypt method.

Parameters

• nonce (bytes-like) – NIST recommends a 96-bit IV length for best performance but it can
be up to 264 - 1 bits. NEVER REUSE A NONCE with a key.

• data (bytes-like) – The data to encrypt.

• associated_data (bytes-like) – Additional data that should be authenticated with the key,
but is not encrypted. Can be None.

Returns bytes
The ciphertext bytes with the 16 byte tag appended.

Raises
OverflowError – If data or associated_data is larger than 231 - 1 bytes.

decrypt(nonce, data, associated_data)
Decrypts the data and authenticates the associated_data. If you called encrypt with
associated_data you must pass the same associated_data in decrypt or the integrity check
will fail.

Parameters

• nonce (bytes-like) – NIST recommends a 96-bit IV length for best performance but it can
be up to 264 - 1 bits. NEVER REUSE A NONCE with a key.

• data (bytes-like) – The data to decrypt (with tag appended).

• associated_data (bytes-like) – Additional data to authenticate. Can be None if none was
passed during encryption.

Returns bytes
The original plaintext.

Raises
cryptography.exceptions.InvalidTag – If the authentication tag doesn’t validate this
exception will be raised. This will occur when the ciphertext has been changed, but will also
occur when the key, nonce, or associated data are wrong.

84 Chapter 2. Layout

https://csrc.nist.gov/pubs/sp/800/38/d/final
https://docs.python.org/3/library/exceptions.html#OverflowError
https://csrc.nist.gov/pubs/sp/800/38/d/final

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.ciphers.aead.AESGCMSIV(key)
Added in version 42.0.0.

The AES-GCM-SIV construction is defined in RFC 8452 and is composed of the AES block cipher utilizing
Galois Counter Mode (GCM) and a synthetic initialization vector (SIV).

Parameters
key (bytes-like) – A 128, 192, or 256-bit key. This must be kept secret.

Raises
cryptography.exceptions.UnsupportedAlgorithm – If the version of OpenSSL does not
support AES-GCM-SIV.

>>> import os
>>> from cryptography.hazmat.primitives.ciphers.aead import AESGCMSIV
>>> data = b"a secret message"
>>> aad = b"authenticated but unencrypted data"
>>> key = AESGCMSIV.generate_key(bit_length=128)
>>> aesgcmsiv = AESGCMSIV(key)
>>> nonce = os.urandom(12)
>>> ct = aesgcmsiv.encrypt(nonce, data, aad)
>>> aesgcmsiv.decrypt(nonce, ct, aad)
b'a secret message'

classmethod generate_key(bit_length)
Securely generates a random AES-GCM-SIV key.

Parameters
bit_length – The bit length of the key to generate. Must be 128, 192, or 256.

Returns bytes
The generated key.

encrypt(nonce, data, associated_data)
Encrypts and authenticates the data provided as well as authenticating the associated_data. The output
of this can be passed directly to the decrypt method.

Parameters

• nonce (bytes-like) – A 12-byte value.

• data (bytes-like) – The data to encrypt.

• associated_data (bytes-like) – Additional data that should be authenticated with the key,
but is not encrypted. Can be None.

Returns bytes
The ciphertext bytes with the 16 byte tag appended.

Raises
OverflowError – If data or associated_data is larger than 232 - 1 bytes.

decrypt(nonce, data, associated_data)
Decrypts the data and authenticates the associated_data. If you called encrypt with
associated_data you must pass the same associated_data in decrypt or the integrity check
will fail.

Parameters

• nonce (bytes-like) – A 12-byte value.

2.3. Primitives 85

https://datatracker.ietf.org/doc/html/rfc8452.html
https://docs.python.org/3/library/exceptions.html#OverflowError

Cryptography Documentation, Release 43.0.0.dev1

• data (bytes-like) – The data to decrypt (with tag appended).

• associated_data (bytes-like) – Additional data to authenticate. Can be None if none was
passed during encryption.

Returns bytes
The original plaintext.

Raises
cryptography.exceptions.InvalidTag – If the authentication tag doesn’t validate this
exception will be raised. This will occur when the ciphertext has been changed, but will also
occur when the key, nonce, or associated data are wrong.

class cryptography.hazmat.primitives.ciphers.aead.AESOCB3(key)
Added in version 36.0.0.

The OCB3 construction is defined in RFC 7253. It is an AEAD mode that offers strong integrity guarantees and
good performance.

Parameters
key (bytes-like) – A 128, 192, or 256-bit key. This must be kept secret.

Raises
cryptography.exceptions.UnsupportedAlgorithm – If the version of OpenSSL does not
support AES-OCB3.

>>> import os
>>> from cryptography.hazmat.primitives.ciphers.aead import AESOCB3
>>> data = b"a secret message"
>>> aad = b"authenticated but unencrypted data"
>>> key = AESOCB3.generate_key(bit_length=128)
>>> aesocb = AESOCB3(key)
>>> nonce = os.urandom(12)
>>> ct = aesocb.encrypt(nonce, data, aad)
>>> aesocb.decrypt(nonce, ct, aad)
b'a secret message'

classmethod generate_key(bit_length)
Securely generates a random AES-OCB3 key.

Parameters
bit_length – The bit length of the key to generate. Must be 128, 192, or 256.

Returns bytes
The generated key.

encrypt(nonce, data, associated_data)

Warning: Reuse of a nonce with a given key compromises the security of any message with that
nonce and key pair.

Encrypts and authenticates the data provided as well as authenticating the associated_data. The output
of this can be passed directly to the decrypt method.

Parameters

• nonce (bytes-like) – A 12-15 byte value. NEVER REUSE A NONCE with a key.

• data (bytes-like) – The data to encrypt.

86 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc7253.html

Cryptography Documentation, Release 43.0.0.dev1

• associated_data (bytes-like) – Additional data that should be authenticated with the key,
but is not encrypted. Can be None.

Returns bytes
The ciphertext bytes with the 16 byte tag appended.

Raises
OverflowError – If data or associated_data is larger than 231 - 1 bytes.

decrypt(nonce, data, associated_data)
Decrypts the data and authenticates the associated_data. If you called encrypt with
associated_data you must pass the same associated_data in decrypt or the integrity check
will fail.

Parameters

• nonce (bytes-like) – A 12 byte value. NEVER REUSE A NONCE with a key.

• data (bytes-like) – The data to decrypt (with tag appended).

• associated_data (bytes-like) – Additional data to authenticate. Can be None if none was
passed during encryption.

Returns bytes
The original plaintext.

Raises
cryptography.exceptions.InvalidTag – If the authentication tag doesn’t validate this
exception will be raised. This will occur when the ciphertext has been changed, but will also
occur when the key, nonce, or associated data are wrong.

class cryptography.hazmat.primitives.ciphers.aead.AESSIV(key)
Added in version 37.0.0.

The SIV (synthetic initialization vector) construction is defined in RFC 5297. Depending on how it is used, SIV
allows either deterministic authenticated encryption or nonce-based, misuse-resistant authenticated encryption.

Parameters
key (bytes-like) – A 256, 384, or 512-bit key (double sized from typical AES). This must be kept
secret.

Raises
cryptography.exceptions.UnsupportedAlgorithm – If the version of OpenSSL does not
support AES-SIV.

>>> import os
>>> from cryptography.hazmat.primitives.ciphers.aead import AESSIV
>>> data = b"a secret message"
>>> nonce = os.urandom(16)
>>> aad = [b"authenticated but unencrypted data", nonce]
>>> key = AESSIV.generate_key(bit_length=512) # AES256 requires 512-bit keys for␣
→˓SIV
>>> aessiv = AESSIV(key)
>>> ct = aessiv.encrypt(data, aad)
>>> aessiv.decrypt(ct, aad)
b'a secret message'

classmethod generate_key(bit_length)
Securely generates a random AES-SIV key.

2.3. Primitives 87

https://docs.python.org/3/library/exceptions.html#OverflowError
https://datatracker.ietf.org/doc/html/rfc5297.html

Cryptography Documentation, Release 43.0.0.dev1

Parameters
bit_length – The bit length of the key to generate. Must be 256, 384, or 512. AES-SIV
splits the key into an encryption and MAC key, so these lengths correspond to AES 128, 192,
and 256.

Returns bytes
The generated key.

encrypt(data, associated_data)

Note: SIV performs nonce-based authenticated encryption when a component of the associated data is a
nonce. The final associated data in the list is used for the nonce.

Random nonces should have at least 128-bits of entropy. If a nonce is reused with SIV authenticity is
retained and confidentiality is only compromised to the extent that an attacker can determine that the same
plaintext (and same associated data) was protected with the same nonce and key.

If you do not supply a nonce encryption is deterministic and the same (plaintext, key) pair will always
produce the same ciphertext.

Encrypts and authenticates the data provided as well as authenticating the associated_data. The output
of this can be passed directly to the decrypt method.

Parameters

• data (bytes-like) – The data to encrypt.

• associated_data (list) – An optional list of bytes-like objects. This is addi-
tional data that should be authenticated with the key, but is not encrypted. Can be None.
In SIV mode the final element of this list is treated as a nonce.

Returns bytes
The ciphertext bytes with the 16 byte tag prepended.

Raises
OverflowError – If data or an associated_data element is larger than 231 - 1 bytes.

decrypt(data, associated_data)
Decrypts the data and authenticates the associated_data. If you called encrypt with
associated_data you must pass the same associated_data in decrypt or the integrity check
will fail.

Parameters

• data (bytes) – The data to decrypt (with tag prepended).

• associated_data (list) – An optional list of bytes-like objects. This is addi-
tional data that should be authenticated with the key, but is not encrypted. Can be None if
none was used during encryption.

Returns bytes
The original plaintext.

Raises
cryptography.exceptions.InvalidTag – If the authentication tag doesn’t validate this
exception will be raised. This will occur when the ciphertext has been changed, but will also
occur when the key or associated data are wrong.

88 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#OverflowError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.ciphers.aead.AESCCM(key, tag_length=16)
Added in version 2.0.

The AES-CCM construction is composed of the AES block cipher utilizing Counter with CBC-MAC (CCM)
(specified in RFC 3610).

Parameters

• key (bytes-like) – A 128, 192, or 256-bit key. This must be kept secret.

• tag_length (int) – The length of the authentication tag. This defaults to 16 bytes and it
is strongly recommended that you do not make it shorter unless absolutely necessary. Valid
tag lengths are 4, 6, 8, 10, 12, 14, and 16.

Raises
cryptography.exceptions.UnsupportedAlgorithm – If the version of OpenSSL does not
support AES-CCM.

>>> import os
>>> from cryptography.hazmat.primitives.ciphers.aead import AESCCM
>>> data = b"a secret message"
>>> aad = b"authenticated but unencrypted data"
>>> key = AESCCM.generate_key(bit_length=128)
>>> aesccm = AESCCM(key)
>>> nonce = os.urandom(13)
>>> ct = aesccm.encrypt(nonce, data, aad)
>>> aesccm.decrypt(nonce, ct, aad)
b'a secret message'

classmethod generate_key(bit_length)
Securely generates a random AES-CCM key.

Parameters
bit_length – The bit length of the key to generate. Must be 128, 192, or 256.

Returns bytes
The generated key.

encrypt(nonce, data, associated_data)

Warning: Reuse of a nonce with a given key compromises the security of any message with that
nonce and key pair.

Encrypts and authenticates the data provided as well as authenticating the associated_data. The output
of this can be passed directly to the decrypt method.

Parameters

• nonce (bytes-like) – A value of between 7 and 13 bytes. The maximum length is deter-
mined by the length of the ciphertext you are encrypting and must satisfy the condition:
len(data) < 2 ** (8 * (15 - len(nonce))) NEVER REUSE A NONCE with a
key.

• data (bytes-like) – The data to encrypt.

• associated_data (bytes-like) – Additional data that should be authenticated with the key,
but is not encrypted. Can be None.

2.3. Primitives 89

https://datatracker.ietf.org/doc/html/rfc3610.html
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

Returns bytes
The ciphertext bytes with the tag appended.

Raises
OverflowError – If data or associated_data is larger than 231 - 1 bytes.

decrypt(nonce, data, associated_data)
Decrypts the data and authenticates the associated_data. If you called encrypt with
associated_data you must pass the same associated_data in decrypt or the integrity check
will fail.

Parameters

• nonce (bytes-like) – A value of between 7 and 13 bytes. This is the same value used when
you originally called encrypt. NEVER REUSE A NONCE with a key.

• data (bytes-like) – The data to decrypt (with tag appended).

• associated_data (bytes-like) – Additional data to authenticate. Can be None if none was
passed during encryption.

Returns bytes
The original plaintext.

Raises
cryptography.exceptions.InvalidTag – If the authentication tag doesn’t validate this
exception will be raised. This will occur when the ciphertext has been changed, but will also
occur when the key, nonce, or associated data are wrong.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.2 Asymmetric algorithms

Asymmetric cryptography is a branch of cryptography where a secret key can be divided into two parts, a public key
and a private key. The public key can be given to anyone, trusted or not, while the private key must be kept secret (just
like the key in symmetric cryptography).

Asymmetric cryptography has two primary use cases: authentication and confidentiality. Using asymmetric cryptog-
raphy, messages can be signed with a private key, and then anyone with the public key is able to verify that the message
was created by someone possessing the corresponding private key. This can be combined with a proof of identity
system to know what entity (person or group) actually owns that private key, providing authentication.

Encryption with asymmetric cryptography works in a slightly different way from symmetric encryption. Someone with
the public key is able to encrypt a message, providing confidentiality, and then only the person in possession of the
private key is able to decrypt it.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

90 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#OverflowError
https://en.wikipedia.org/wiki/Public-key_infrastructure

Cryptography Documentation, Release 43.0.0.dev1

Ed25519 signing

Ed25519 is an elliptic curve signing algorithm using EdDSA and Curve25519. If you do not have legacy interoperability
concerns then you should strongly consider using this signature algorithm.

Signing & Verification

>>> from cryptography.hazmat.primitives.asymmetric.ed25519 import Ed25519PrivateKey
>>> private_key = Ed25519PrivateKey.generate()
>>> signature = private_key.sign(b"my authenticated message")
>>> public_key = private_key.public_key()
>>> # Raises InvalidSignature if verification fails
>>> public_key.verify(signature, b"my authenticated message")

Key interfaces

class cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey

Added in version 2.6.

classmethod generate()

Generate an Ed25519 private key.

Returns
Ed25519PrivateKey

classmethod from_private_bytes(data)

Parameters
data (bytes-like) – 32 byte private key.

Returns
Ed25519PrivateKey

Raises

• ValueError – This is raised if the private key is not 32 bytes long.

• cryptography.exceptions.UnsupportedAlgorithm – If Ed25519 is not supported
by the OpenSSL version cryptography is using.

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.asymmetric import ed25519
>>> private_key = ed25519.Ed25519PrivateKey.generate()
>>> private_bytes = private_key.private_bytes(
... encoding=serialization.Encoding.Raw,
... format=serialization.PrivateFormat.Raw,
... encryption_algorithm=serialization.NoEncryption()
...)
>>> loaded_private_key = ed25519.Ed25519PrivateKey.from_private_bytes(private_
→˓bytes)

public_key()

Returns
Ed25519PublicKey

2.3. Primitives 91

https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Curve25519
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

sign(data)

Parameters
data (bytes-like) – The data to sign.

Returns bytes
The 64 byte signature.

private_bytes(encoding, format, encryption_algorithm)

Allows serialization of the key to bytes. Encoding (PEM , DER , or Raw) and format (PKCS8, OpenSSH or
Raw) are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum. If the encoding is Raw then format
must be Raw , otherwise it must be PKCS8 or OpenSSH .

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

private_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
private_bytes() with Raw encoding, Raw format, and NoEncryption.

Return bytes
Raw key.

class cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey

Added in version 2.6.

classmethod from_public_bytes(data)

Parameters
data (bytes) – 32 byte public key.

Returns
Ed25519PublicKey

Raises

• ValueError – This is raised if the public key is not 32 bytes long.

• cryptography.exceptions.UnsupportedAlgorithm – If Ed25519 is not supported
by the OpenSSL version cryptography is using.

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.asymmetric import ed25519
>>> private_key = ed25519.Ed25519PrivateKey.generate()
>>> public_key = private_key.public_key()
>>> public_bytes = public_key.public_bytes(
... encoding=serialization.Encoding.Raw,
... format=serialization.PublicFormat.Raw
...)
>>> loaded_public_key = ed25519.Ed25519PublicKey.from_public_bytes(public_bytes)

92 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

public_bytes(encoding, format)
Allows serialization of the key to bytes. Encoding (PEM , DER , OpenSSH , or Raw) and format (
SubjectPublicKeyInfo, OpenSSH , or Raw) are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum. If the encoding is Raw then format
must be Raw. If encoding is OpenSSH then format must be OpenSSH . In all other cases
format must be SubjectPublicKeyInfo.

Returns bytes
The public key bytes.

public_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
public_bytes() with Raw encoding and Raw format.

Return bytes
Raw key.

verify(signature, data)

Parameters

• signature (bytes-like) – The signature to verify.

• data (bytes-like) – The data to verify.

Returns
None

Raises
cryptography.exceptions.InvalidSignature – Raised when the signature cannot be
verified.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

X25519 key exchange

X25519 is an elliptic curve Diffie-Hellman key exchange using Curve25519. It allows two parties to jointly agree on a
shared secret using an insecure channel.

2.3. Primitives 93

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Curve25519

Cryptography Documentation, Release 43.0.0.dev1

Exchange Algorithm

For most applications the shared_key should be passed to a key derivation function. This allows mixing of additional
information into the key, derivation of multiple keys, and destroys any structure that may be present.

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric.x25519 import X25519PrivateKey
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDF
>>> # Generate a private key for use in the exchange.
>>> private_key = X25519PrivateKey.generate()
>>> # In a real handshake the peer_public_key will be received from the
>>> # other party. For this example we'll generate another private key and
>>> # get a public key from that. Note that in a DH handshake both peers
>>> # must agree on a common set of parameters.
>>> peer_public_key = X25519PrivateKey.generate().public_key()
>>> shared_key = private_key.exchange(peer_public_key)
>>> # Perform key derivation.
>>> derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key)
>>> # For the next handshake we MUST generate another private key.
>>> private_key_2 = X25519PrivateKey.generate()
>>> peer_public_key_2 = X25519PrivateKey.generate().public_key()
>>> shared_key_2 = private_key_2.exchange(peer_public_key_2)
>>> derived_key_2 = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key_2)

Key interfaces

class cryptography.hazmat.primitives.asymmetric.x25519.X25519PrivateKey

Added in version 2.0.

classmethod generate()

Generate an X25519 private key.

Returns
X25519PrivateKey

classmethod from_private_bytes(data)
Added in version 2.5.

A class method for loading an X25519 key encoded as Raw.

Parameters
data (bytes) – 32 byte private key.

Returns
X25519PrivateKey

94 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.asymmetric import x25519
>>> private_key = x25519.X25519PrivateKey.generate()
>>> private_bytes = private_key.private_bytes(
... encoding=serialization.Encoding.Raw,
... format=serialization.PrivateFormat.Raw,
... encryption_algorithm=serialization.NoEncryption()
...)
>>> loaded_private_key = x25519.X25519PrivateKey.from_private_bytes(private_
→˓bytes)

public_key()

Returns
X25519PublicKey

exchange(peer_public_key)

Parameters
peer_public_key (X25519PublicKey) – The public key for the peer.

Returns bytes
A shared key.

private_bytes(encoding, format, encryption_algorithm)

Added in version 2.5.

Allows serialization of the key to bytes. Encoding (PEM , DER , or Raw) and format (PKCS8 or Raw) are
chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum. If the encoding is Raw then format
must be Raw , otherwise it must be PKCS8.

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

private_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
private_bytes() with Raw encoding, Raw format, and NoEncryption.

Return bytes
Raw key.

class cryptography.hazmat.primitives.asymmetric.x25519.X25519PublicKey

Added in version 2.0.

classmethod from_public_bytes(data)

Parameters
data (bytes) – 32 byte public key.

2.3. Primitives 95

https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Returns
X25519PublicKey

>>> from cryptography.hazmat.primitives.asymmetric import x25519
>>> private_key = x25519.X25519PrivateKey.generate()
>>> public_key = private_key.public_key()
>>> public_bytes = public_key.public_bytes(
... encoding=serialization.Encoding.Raw,
... format=serialization.PublicFormat.Raw
...)
>>> loaded_public_key = x25519.X25519PublicKey.from_public_bytes(public_bytes)

public_bytes(encoding, format)
Allows serialization of the key to bytes. Encoding (PEM , DER , or Raw) and format (
SubjectPublicKeyInfo or Raw) are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum. If the encoding is Raw then format
must be Raw , otherwise it must be SubjectPublicKeyInfo.

Returns bytes
The public key bytes.

public_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
public_bytes() with Raw encoding and Raw format.

Return bytes
Raw key.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Ed448 signing

Ed448 is an elliptic curve signing algorithm using EdDSA.

Signing & Verification

>>> from cryptography.hazmat.primitives.asymmetric.ed448 import Ed448PrivateKey
>>> private_key = Ed448PrivateKey.generate()
>>> signature = private_key.sign(b"my authenticated message")
>>> public_key = private_key.public_key()
>>> # Raises InvalidSignature if verification fails
>>> public_key.verify(signature, b"my authenticated message")

96 Chapter 2. Layout

https://en.wikipedia.org/wiki/EdDSA

Cryptography Documentation, Release 43.0.0.dev1

Key interfaces

class cryptography.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey

Added in version 2.6.

classmethod generate()

Generate an Ed448 private key.

Returns
Ed448PrivateKey

classmethod from_private_bytes(data)

Parameters
data (bytes-like) – 57 byte private key.

Returns
Ed448PrivateKey

public_key()

Returns
Ed448PublicKey

sign(data)

Parameters
data (bytes-like) – The data to sign.

Returns bytes
The 114 byte signature.

private_bytes(encoding, format, encryption_algorithm)

Allows serialization of the key to bytes. Encoding (PEM , DER , or Raw) and format (PKCS8 or Raw) are
chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum. If the encoding is Raw then format
must be Raw , otherwise it must be PKCS8.

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

private_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
private_bytes() with Raw encoding, Raw format, and NoEncryption.

Return bytes
Raw key.

class cryptography.hazmat.primitives.asymmetric.ed448.Ed448PublicKey

Added in version 2.6.

2.3. Primitives 97

Cryptography Documentation, Release 43.0.0.dev1

classmethod from_public_bytes(data)

Parameters
data (bytes) – 57 byte public key.

Returns
Ed448PublicKey

public_bytes(encoding, format)
Allows serialization of the key to bytes. Encoding (PEM , DER , or Raw) and format (
SubjectPublicKeyInfo or Raw) are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum. If the encoding is Raw then format
must be Raw , otherwise it must be SubjectPublicKeyInfo.

Returns bytes
The public key bytes.

public_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
public_bytes() with Raw encoding and Raw format.

Return bytes
Raw key.

verify(signature, data)

Parameters

• signature (bytes-like) – The signature to verify.

• data (bytes-like) – The data to verify.

Returns
None

Raises
cryptography.exceptions.InvalidSignature – Raised when the signature cannot be
verified.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

98 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

X448 key exchange

X448 is an elliptic curve Diffie-Hellman key exchange using Curve448. It allows two parties to jointly agree on a shared
secret using an insecure channel.

Exchange Algorithm

For most applications the shared_key should be passed to a key derivation function. This allows mixing of additional
information into the key, derivation of multiple keys, and destroys any structure that may be present.

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric.x448 import X448PrivateKey
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDF
>>> # Generate a private key for use in the exchange.
>>> private_key = X448PrivateKey.generate()
>>> # In a real handshake the peer_public_key will be received from the
>>> # other party. For this example we'll generate another private key and
>>> # get a public key from that. Note that in a DH handshake both peers
>>> # must agree on a common set of parameters.
>>> peer_public_key = X448PrivateKey.generate().public_key()
>>> shared_key = private_key.exchange(peer_public_key)
>>> # Perform key derivation.
>>> derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key)
>>> # For the next handshake we MUST generate another private key.
>>> private_key_2 = X448PrivateKey.generate()
>>> peer_public_key_2 = X448PrivateKey.generate().public_key()
>>> shared_key_2 = private_key_2.exchange(peer_public_key_2)
>>> derived_key_2 = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key_2)

Key interfaces

class cryptography.hazmat.primitives.asymmetric.x448.X448PrivateKey

Added in version 2.5.

classmethod generate()

Generate an X448 private key.

Returns
X448PrivateKey

classmethod from_private_bytes(data)

2.3. Primitives 99

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Curve448

Cryptography Documentation, Release 43.0.0.dev1

Parameters
data (bytes-like) – 56 byte private key.

Returns
X448PrivateKey

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.asymmetric import x448
>>> private_key = x448.X448PrivateKey.generate()
>>> private_bytes = private_key.private_bytes(
... encoding=serialization.Encoding.Raw,
... format=serialization.PrivateFormat.Raw,
... encryption_algorithm=serialization.NoEncryption()
...)
>>> loaded_private_key = x448.X448PrivateKey.from_private_bytes(private_bytes)

public_key()

Returns
X448PublicKey

exchange(peer_public_key)

Parameters
peer_public_key (X448PublicKey) – The public key for the peer.

Returns bytes
A shared key.

private_bytes(encoding, format, encryption_algorithm)

Allows serialization of the key to bytes. Encoding (PEM , DER , or Raw) and format (PKCS8 or Raw) are
chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum. If the encoding is Raw then format
must be Raw , otherwise it must be PKCS8.

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

private_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
private_bytes() with Raw encoding, Raw format, and NoEncryption.

Return bytes
Raw key.

class cryptography.hazmat.primitives.asymmetric.x448.X448PublicKey

Added in version 2.5.

classmethod from_public_bytes(data)

100 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Parameters
data (bytes) – 56 byte public key.

Returns
X448PublicKey

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.asymmetric import x448
>>> private_key = x448.X448PrivateKey.generate()
>>> public_key = private_key.public_key()
>>> public_bytes = public_key.public_bytes(
... encoding=serialization.Encoding.Raw,
... format=serialization.PublicFormat.Raw
...)
>>> loaded_public_key = x448.X448PublicKey.from_public_bytes(public_bytes)

public_bytes(encoding, format)
Allows serialization of the key to bytes. Encoding (PEM , DER , or Raw) and format (
SubjectPublicKeyInfo or Raw) are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum. If the encoding is Raw then format
must be Raw , otherwise it must be SubjectPublicKeyInfo.

Returns bytes
The public key bytes.

public_bytes_raw()

Added in version 40.

Allows serialization of the key to raw bytes. This method is a convenience shortcut for calling
public_bytes() with Raw encoding and Raw format.

Return bytes
Raw key.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Elliptic curve cryptography

cryptography.hazmat.primitives.asymmetric.ec.generate_private_key(curve)
Added in version 0.5.

Generate a new private key on curve.

Parameters
curve – An instance of EllipticCurve.

Returns
A new instance of EllipticCurvePrivateKey.

2.3. Primitives 101

https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

cryptography.hazmat.primitives.asymmetric.ec.derive_private_key(private_value, curve)
Added in version 1.6.

Derive a private key from private_value on curve.

Parameters

• private_value (int) – The secret scalar value.

• curve – An instance of EllipticCurve.

Returns
A new instance of EllipticCurvePrivateKey.

Elliptic Curve Signature Algorithms

class cryptography.hazmat.primitives.asymmetric.ec.ECDSA(algorithm)

Added in version 0.5.

The ECDSA signature algorithm first standardized in NIST publication FIPS 186-3, and later in FIPS 186-4.

Note that while elliptic curve keys can be used for both signing and key exchange, this is bad cryptographic
practice. Instead, users should generate separate signing and ECDH keys.

Parameters

• algorithm – An instance of HashAlgorithm .

• deterministic_signing (bool) – A boolean flag defaulting to False that specifies
whether the signing procedure should be deterministic or not, as defined in RFC 6979. This
only impacts the signing process, verification is not affected (the verification process is the
same for both deterministic and non-deterministic signed messages).

Added in version 43.0.0.

Raises
cryptography.exceptions.UnsupportedAlgorithm – If deterministic_signing is set
to True and the version of OpenSSL does not support ECDSA with deterministic signing.

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import ec
>>> private_key = ec.generate_private_key(
... ec.SECP384R1()
...)
>>> data = b"this is some data I'd like to sign"
>>> signature = private_key.sign(
... data,
... ec.ECDSA(hashes.SHA256())
...)

The signature is a bytes object, whose contents are DER encoded as described in RFC 3279. This can be
decoded using decode_dss_signature().

If your data is too large to be passed in a single call, you can hash it separately and pass that value using
Prehashed .

>>> from cryptography.hazmat.primitives.asymmetric import utils
>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash)

(continues on next page)

102 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://csrc.nist.gov/files/pubs/fips/186-3/final/docs/fips_186-3.pdf
https://csrc.nist.gov/pubs/fips/186-4/final
https://crypto.stackexchange.com/a/3313
https://crypto.stackexchange.com/a/3313
https://docs.python.org/3/library/functions.html#bool
https://datatracker.ietf.org/doc/html/rfc6979.html
https://datatracker.ietf.org/doc/html/rfc3279.html

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> sig = private_key.sign(
... digest,
... ec.ECDSA(utils.Prehashed(chosen_hash))
...)

Verification requires the public key, the DER-encoded signature itself, the signed data, and knowledge of the
hashing algorithm that was used when producing the signature:

>>> public_key = private_key.public_key()
>>> public_key.verify(signature, data, ec.ECDSA(hashes.SHA256()))

As above, the signature is a bytes object whose contents are DER encoded as described in RFC 3279. It can
be created from a raw (r,s) pair by using encode_dss_signature().

If the signature is not valid, an InvalidSignature exception will be raised.

If your data is too large to be passed in a single call, you can hash it separately and pass that value using
Prehashed .

>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash)
>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> public_key.verify(
... sig,
... digest,
... ec.ECDSA(utils.Prehashed(chosen_hash))
...)

Note: Although in this case the public key was derived from the private one, in a typical setting you will not
possess the private key. The Key loading section explains how to load the public key from other sources.

class cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateNumbers(private_value,
pub-
lic_numbers)

Added in version 0.5.

The collection of integers that make up an EC private key.

public_numbers

Type
EllipticCurvePublicNumbers

The EllipticCurvePublicNumbers which makes up the EC public key associated with this EC private
key.

private_value

Type
int

2.3. Primitives 103

https://datatracker.ietf.org/doc/html/rfc3279.html
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

The private value.

private_key()

Convert a collection of numbers into a private key suitable for doing actual cryptographic operations.

Returns
A new instance of EllipticCurvePrivateKey.

class cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers(x, y, curve)

Warning: The point represented by this object is not validated in any way until
EllipticCurvePublicNumbers.public_key() is called and may not represent a valid point on
the curve. You should not attempt to perform any computations using the values from this class until you
have either validated it yourself or called public_key() successfully.

Added in version 0.5.

The collection of integers that make up an EC public key.

curve

Type
EllipticCurve

The elliptic curve for this key.

x

Type
int

The affine x component of the public point used for verifying.

y

Type
int

The affine y component of the public point used for verifying.

public_key()

Convert a collection of numbers into a public key suitable for doing actual cryptographic operations.

Raises
ValueError – Raised if the point is invalid for the curve.

Returns
A new instance of EllipticCurvePublicKey.

Elliptic Curve Key Exchange algorithm

class cryptography.hazmat.primitives.asymmetric.ec.ECDH

Added in version 1.1.

The Elliptic Curve Diffie-Hellman Key Exchange algorithm standardized in NIST publication 800-56A.

For most applications the shared_key should be passed to a key derivation function. This allows mixing of
additional information into the key, derivation of multiple keys, and destroys any structure that may be present.

Note that while elliptic curve keys can be used for both signing and key exchange, this is bad cryptographic
practice. Instead, users should generate separate signing and ECDH keys.

104 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://crypto.stackexchange.com/a/3313
https://crypto.stackexchange.com/a/3313

Cryptography Documentation, Release 43.0.0.dev1

Warning: This example does not give forward secrecy and is only provided as a demonstration of the basic
Diffie-Hellman construction. For real world applications always use the ephemeral form described after this
example.

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import ec
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDF
>>> # Generate a private key for use in the exchange.
>>> server_private_key = ec.generate_private_key(
... ec.SECP384R1()
...)
>>> # In a real handshake the peer is a remote client. For this
>>> # example we'll generate another local private key though.
>>> peer_private_key = ec.generate_private_key(
... ec.SECP384R1()
...)
>>> shared_key = server_private_key.exchange(
... ec.ECDH(), peer_private_key.public_key())
>>> # Perform key derivation.
>>> derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key)
>>> # And now we can demonstrate that the handshake performed in the
>>> # opposite direction gives the same final value
>>> same_shared_key = peer_private_key.exchange(
... ec.ECDH(), server_private_key.public_key())
>>> # Perform key derivation.
>>> same_derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(same_shared_key)
>>> derived_key == same_derived_key
True

ECDHE (or EECDH), the ephemeral form of this exchange, is strongly preferred over simple ECDH and pro-
vides forward secrecy when used. You must generate a new private key using generate_private_key() for
each exchange() when performing an ECDHE key exchange. An example of the ephemeral form:

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import ec
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDF
>>> # Generate a private key for use in the exchange.
>>> private_key = ec.generate_private_key(
... ec.SECP384R1()
...)
>>> # In a real handshake the peer_public_key will be received from the
>>> # other party. For this example we'll generate another private key

(continues on next page)

2.3. Primitives 105

https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> # and get a public key from that.
>>> peer_public_key = ec.generate_private_key(
... ec.SECP384R1()
...).public_key()
>>> shared_key = private_key.exchange(ec.ECDH(), peer_public_key)
>>> # Perform key derivation.
>>> derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key)
>>> # For the next handshake we MUST generate another private key.
>>> private_key_2 = ec.generate_private_key(
... ec.SECP384R1()
...)
>>> peer_public_key_2 = ec.generate_private_key(
... ec.SECP384R1()
...).public_key()
>>> shared_key_2 = private_key_2.exchange(ec.ECDH(), peer_public_key_2)
>>> derived_key_2 = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key_2)

Elliptic Curves

Elliptic curves provide equivalent security at much smaller key sizes than other asymmetric cryptography systems such
as RSA or DSA. For many operations elliptic curves are also significantly faster; elliptic curve diffie-hellman is faster
than diffie-hellman.

Note: Curves with a size of less than 224 bits should not be used. You should strongly consider using curves of at
least 224 bits.

Generally the NIST prime field (“P”) curves are significantly faster than the other types suggested by NIST at both
signing and verifying with ECDSA.

Prime fields also minimize the number of security concerns for elliptic-curve cryptography. However, there is some
concern that both the prime field and binary field (“B”) NIST curves may have been weakened during their generation.

Currently cryptography only supports NIST curves, none of which are considered “safe” by the SafeCurves project run
by Daniel J. Bernstein and Tanja Lange.

All named curves are instances of EllipticCurve.

class cryptography.hazmat.primitives.asymmetric.ec.SECP256R1

Added in version 0.5.

SECG curve secp256r1. Also called NIST P-256.

106 Chapter 2. Layout

https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1100&context=cseconfwork
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1100&context=cseconfwork
https://www.cosic.esat.kuleuven.be/ecrypt/ecrypt2/documents/D.SPA.20.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://crypto.stackexchange.com/questions/10263/should-we-trust-the-nist-recommended-ecc-parameters
https://crypto.stackexchange.com/questions/10263/should-we-trust-the-nist-recommended-ecc-parameters
https://safecurves.cr.yp.to/

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.asymmetric.ec.SECP384R1

Added in version 0.5.

SECG curve secp384r1. Also called NIST P-384.

class cryptography.hazmat.primitives.asymmetric.ec.SECP521R1

Added in version 0.5.

SECG curve secp521r1. Also called NIST P-521.

class cryptography.hazmat.primitives.asymmetric.ec.SECP224R1

Added in version 0.5.

SECG curve secp224r1. Also called NIST P-224.

class cryptography.hazmat.primitives.asymmetric.ec.SECP192R1

Added in version 0.5.

SECG curve secp192r1. Also called NIST P-192.

class cryptography.hazmat.primitives.asymmetric.ec.SECP256K1

Added in version 0.9.

SECG curve secp256k1.

class cryptography.hazmat.primitives.asymmetric.ec.BrainpoolP256R1

Added in version 2.2.

Brainpool curve specified in RFC 5639. These curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.BrainpoolP384R1

Added in version 2.2.

Brainpool curve specified in RFC 5639. These curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.BrainpoolP512R1

Added in version 2.2.

Brainpool curve specified in RFC 5639. These curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT571K1

Added in version 0.5.

SECG curve sect571k1. Also called NIST K-571. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT409K1

Added in version 0.5.

SECG curve sect409k1. Also called NIST K-409. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT283K1

Added in version 0.5.

SECG curve sect283k1. Also called NIST K-283. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT233K1

Added in version 0.5.

SECG curve sect233k1. Also called NIST K-233. These binary curves are discouraged for new systems.

2.3. Primitives 107

https://datatracker.ietf.org/doc/html/rfc5639.html
https://datatracker.ietf.org/doc/html/rfc5639.html
https://datatracker.ietf.org/doc/html/rfc5639.html

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.asymmetric.ec.SECT163K1

Added in version 0.5.

SECG curve sect163k1. Also called NIST K-163. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT571R1

Added in version 0.5.

SECG curve sect571r1. Also called NIST B-571. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT409R1

Added in version 0.5.

SECG curve sect409r1. Also called NIST B-409. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT283R1

Added in version 0.5.

SECG curve sect283r1. Also called NIST B-283. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT233R1

Added in version 0.5.

SECG curve sect233r1. Also called NIST B-233. These binary curves are discouraged for new systems.

class cryptography.hazmat.primitives.asymmetric.ec.SECT163R2

Added in version 0.5.

SECG curve sect163r2. Also called NIST B-163. These binary curves are discouraged for new systems.

Key Interfaces

class cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve

Added in version 0.5.

A named elliptic curve.

name

Type
str

The name of the curve. Usually the name used for the ASN.1 OID such as secp256k1.

key_size

Type
int

Size (in bits) of a secret scalar for the curve (as generated by generate_private_key()).

class cryptography.hazmat.primitives.asymmetric.ec.EllipticCurveSignatureAlgorithm

Added in version 0.5.

Changed in version 1.6: Prehashed can now be used as an algorithm.

A signature algorithm for use with elliptic curve keys.

108 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

algorithm

Type
HashAlgorithm or Prehashed

The digest algorithm to be used with the signature scheme.

class cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey

Added in version 0.5.

An elliptic curve private key for use with an algorithm such as ECDSA.

exchange(algorithm, peer_public_key)
Added in version 1.1.

Performs a key exchange operation using the provided algorithm with the peer’s public key.

For most applications the shared_key should be passed to a key derivation function. This allows mixing
of additional information into the key, derivation of multiple keys, and destroys any structure that may be
present.

Parameters

• algorithm – The key exchange algorithm, currently only ECDH is supported.

• peer_public_key (EllipticCurvePublicKey) – The public key for the peer.

Returns bytes
A shared key.

public_key()

Returns
EllipticCurvePublicKey

The EllipticCurvePublicKey object for this private key.

sign(data, signature_algorithm)

Added in version 1.5.

Sign one block of data which can be verified later by others using the public key.

Parameters

• data (bytes-like) – The message string to sign.

• signature_algorithm – An instance of EllipticCurveSignatureAlgorithm , such
as ECDSA .

Return bytes
The signature as a bytes object, whose contents are DER encoded as described in RFC
3279. This can be decoded using decode_dss_signature(), which returns the decoded
tuple (r, s).

curve

Type
EllipticCurve

The EllipticCurve that this key is on.

key_size

Added in version 1.9.

2.3. Primitives 109

https://en.wikipedia.org/wiki/ECDSA
https://datatracker.ietf.org/doc/html/rfc3279.html
https://datatracker.ietf.org/doc/html/rfc3279.html

Cryptography Documentation, Release 43.0.0.dev1

Type
int

Size (in bits) of a secret scalar for the curve (as generated by generate_private_key()).

private_numbers()

Create a EllipticCurvePrivateNumbers object.

Returns
An EllipticCurvePrivateNumbers instance.

private_bytes(encoding, format, encryption_algorithm)

Allows serialization of the key to bytes. Encoding (PEM or DER), format (TraditionalOpenSSL,
OpenSSH or PKCS8) and encryption algorithm (such as BestAvailableEncryption or NoEncryption)
are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum.

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

class cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey

Added in version 0.5.

An elliptic curve public key.

curve

Type
EllipticCurve

The elliptic curve for this key.

public_numbers()

Create a EllipticCurvePublicNumbers object.

Returns
An EllipticCurvePublicNumbers instance.

public_bytes(encoding, format)
Allows serialization of the key data to bytes. When encoding the public key the encodings (PEM , DER) and
format (SubjectPublicKeyInfo) are chosen to define the exact serialization. When encoding the point
the encoding X962 should be used with the formats (UncompressedPoint or CompressedPoint).

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum.

Return bytes
Serialized data.

verify(signature, data, signature_algorithm)

Added in version 1.5.

Verify one block of data was signed by the private key associated with this public key.

110 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

Parameters

• signature (bytes-like) – The DER-encoded signature to verify. A raw signature may
be DER-encoded by splitting it into the r and s components and passing them into
encode_dss_signature().

• data (bytes-like) – The message string that was signed.

• signature_algorithm – An instance of EllipticCurveSignatureAlgorithm .

Returns
None

Raises
cryptography.exceptions.InvalidSignature – If the signature does not validate.

key_size

Added in version 1.9.

Type
int

Size (in bits) of a secret scalar for the curve (as generated by generate_private_key()).

classmethod from_encoded_point(curve, data)
Added in version 2.5.

Decodes a byte string as described in SEC 1 v2.0 section 2.3.3 and returns an EllipticCurvePublicKey.
This class method supports compressed points.

Parameters

• curve – An EllipticCurve instance.

• data (bytes) – The serialized point byte string.

Returns
An EllipticCurvePublicKey instance.

Raises

• ValueError – Raised when an invalid point is supplied.

• TypeError – Raised when curve is not an EllipticCurve.

Serialization

This sample demonstrates how to generate a private key and serialize it.

>>> from cryptography.hazmat.primitives import serialization
>>> from cryptography.hazmat.primitives.asymmetric import ec

>>> private_key = ec.generate_private_key(ec.SECP384R1())

>>> serialized_private = private_key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.PKCS8,
... encryption_algorithm=serialization.BestAvailableEncryption(b'testpassword')
...)
>>> serialized_private.splitlines()[0]
b'-----BEGIN ENCRYPTED PRIVATE KEY-----'

2.3. Primitives 111

https://docs.python.org/3/library/functions.html#int
https://www.secg.org/sec1-v2.pdf
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

You can also serialize the key without a password, by relying on NoEncryption.

The public key is serialized as follows:

>>> public_key = private_key.public_key()
>>> serialized_public = public_key.public_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PublicFormat.SubjectPublicKeyInfo
...)
>>> serialized_public.splitlines()[0]
b'-----BEGIN PUBLIC KEY-----'

This is the part that you would normally share with the rest of the world.

Key loading

This extends the sample in the previous section, assuming that the variables serialized_private and
serialized_public contain the respective keys in PEM format.

>>> loaded_public_key = serialization.load_pem_public_key(
... serialized_public,
...)

>>> loaded_private_key = serialization.load_pem_private_key(
... serialized_private,
... # or password=None, if in plain text
... password=b'testpassword',
...)

Elliptic Curve Object Identifiers

class cryptography.hazmat.primitives.asymmetric.ec.EllipticCurveOID

Added in version 2.4.

SECP192R1

Corresponds to the dotted string "1.2.840.10045.3.1.1".

SECP224R1

Corresponds to the dotted string "1.3.132.0.33".

SECP256K1

Corresponds to the dotted string "1.3.132.0.10".

SECP256R1

Corresponds to the dotted string "1.2.840.10045.3.1.7".

SECP384R1

Corresponds to the dotted string "1.3.132.0.34".

SECP521R1

Corresponds to the dotted string "1.3.132.0.35".

112 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

BRAINPOOLP256R1

Added in version 2.5.

Corresponds to the dotted string "1.3.36.3.3.2.8.1.1.7".

BRAINPOOLP384R1

Added in version 2.5.

Corresponds to the dotted string "1.3.36.3.3.2.8.1.1.11".

BRAINPOOLP512R1

Added in version 2.5.

Corresponds to the dotted string "1.3.36.3.3.2.8.1.1.13".

SECT163K1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.1".

SECT163R2

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.15".

SECT233K1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.26".

SECT233R1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.27".

SECT283K1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.16".

SECT283R1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.17".

SECT409K1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.36".

SECT409R1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.37".

SECT571K1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.38".

2.3. Primitives 113

Cryptography Documentation, Release 43.0.0.dev1

SECT571R1

Added in version 2.5.

Corresponds to the dotted string "1.3.132.0.39".

cryptography.hazmat.primitives.asymmetric.ec.get_curve_for_oid(oid)
Added in version 2.6.

A function that takes an ObjectIdentifier and returns the associated elliptic curve class.

Parameters
oid – An instance of ObjectIdentifier.

Returns
The matching elliptic curve class. The returned class conforms to the EllipticCurve interface.

Raises
LookupError – Raised if no elliptic curve is found that matches the provided object identifier.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

RSA

RSA is a public-key algorithm for encrypting and signing messages.

Generation

Unlike symmetric cryptography, where the key is typically just a random series of bytes, RSA keys have a complex
internal structure with specific mathematical properties.

cryptography.hazmat.primitives.asymmetric.rsa.generate_private_key(public_exponent, key_size)
Added in version 0.5.

Changed in version 3.0: Tightened restrictions on public_exponent.

Generates a new RSA private key. key_size describes how many bits long the key should be. Larger keys
provide more security; currently 1024 and below are considered breakable while 2048 or 4096 are reasonable
default key sizes for new keys. The public_exponent indicates what one mathematical property of the key
generation will be. Unless you have a specific reason to do otherwise, you should always use 65537.

>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> private_key = rsa.generate_private_key(
... public_exponent=65537,
... key_size=2048,
...)

Parameters

• public_exponent (int) – The public exponent of the new key. Either 65537 or 3 (for
legacy purposes). Almost everyone should use 65537.

• key_size (int) – The length of the modulus in bits. For keys generated in 2015 it is strongly
recommended to be at least 2048 (See page 41). It must not be less than 512.

114 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#LookupError
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation
https://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
https://docs.python.org/3/library/functions.html#int
https://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
https://docs.python.org/3/library/functions.html#int
https://www.cosic.esat.kuleuven.be/ecrypt/ecrypt2/documents/D.SPA.20.pdf

Cryptography Documentation, Release 43.0.0.dev1

Returns
An instance of RSAPrivateKey.

Key loading

If you already have an on-disk key in the PEM format (which are recognizable by the distinctive -----BEGIN
{format}----- and -----END {format}----- markers), you can load it:

>>> from cryptography.hazmat.primitives import serialization

>>> with open("path/to/key.pem", "rb") as key_file:
... private_key = serialization.load_pem_private_key(
... key_file.read(),
... password=None,
...)

Serialized keys may optionally be encrypted on disk using a password. In this example we loaded an unencrypted key,
and therefore we did not provide a password. If the key is encrypted we can pass a bytes object as the password
argument.

There is also support for loading public keys in the SSH format.

Key serialization

If you have a private key that you’ve loaded you can use private_bytes() to serialize the key.

>>> from cryptography.hazmat.primitives import serialization
>>> pem = private_key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.PKCS8,
... encryption_algorithm=serialization.BestAvailableEncryption(b'mypassword')
...)
>>> pem.splitlines()[0]
b'-----BEGIN ENCRYPTED PRIVATE KEY-----'

It is also possible to serialize without encryption using NoEncryption.

>>> pem = private_key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.TraditionalOpenSSL,
... encryption_algorithm=serialization.NoEncryption()
...)
>>> pem.splitlines()[0]
b'-----BEGIN RSA PRIVATE KEY-----'

For public keys you can use public_bytes() to serialize the key.

>>> from cryptography.hazmat.primitives import serialization
>>> public_key = private_key.public_key()
>>> pem = public_key.public_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PublicFormat.SubjectPublicKeyInfo

(continues on next page)

2.3. Primitives 115

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

...)
>>> pem.splitlines()[0]
b'-----BEGIN PUBLIC KEY-----'

Signing

A private key can be used to sign a message. This allows anyone with the public key to verify that the message was
created by someone who possesses the corresponding private key. RSA signatures require a specific hash function, and
padding to be used. Here is an example of signing message using RSA, with a secure hash function and padding:

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import padding
>>> message = b"A message I want to sign"
>>> signature = private_key.sign(
... message,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
...),
... hashes.SHA256()
...)

Valid paddings for signatures are PSS and PKCS1v15. PSS is the recommended choice for any new protocols or appli-
cations, PKCS1v15 should only be used to support legacy protocols.

If your data is too large to be passed in a single call, you can hash it separately and pass that value using Prehashed .

>>> from cryptography.hazmat.primitives.asymmetric import utils
>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash)
>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> sig = private_key.sign(
... digest,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
...),
... utils.Prehashed(chosen_hash)
...)

116 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Verification

The previous section describes what to do if you have a private key and want to sign something. If you have a public
key, a message, a signature, and the signing algorithm that was used you can check that the private key associated with
a given public key was used to sign that specific message. You can obtain a public key to use in verification using
load_pem_public_key(), load_der_public_key(), public_key() , or public_key().

>>> public_key = private_key.public_key()
>>> public_key.verify(
... signature,
... message,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
...),
... hashes.SHA256()
...)

If the signature does not match, verify() will raise an InvalidSignature exception.

If your data is too large to be passed in a single call, you can hash it separately and pass that value using Prehashed .

>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash)
>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> public_key.verify(
... sig,
... digest,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
...),
... utils.Prehashed(chosen_hash)
...)

Encryption

RSA encryption is interesting because encryption is performed using the public key, meaning anyone can encrypt data.
The data is then decrypted using the private key.

Like signatures, RSA supports encryption with several different padding options. Here’s an example using a secure
padding and hash function:

>>> message = b"encrypted data"
>>> ciphertext = public_key.encrypt(
... message,
... padding.OAEP(
... mgf=padding.MGF1(algorithm=hashes.SHA256()),
... algorithm=hashes.SHA256(),
... label=None

(continues on next page)

2.3. Primitives 117

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

...)

...)

Valid paddings for encryption are OAEP and PKCS1v15. OAEP is the recommended choice for any new protocols or
applications, PKCS1v15 should only be used to support legacy protocols.

Decryption

Once you have an encrypted message, it can be decrypted using the private key:

>>> plaintext = private_key.decrypt(
... ciphertext,
... padding.OAEP(
... mgf=padding.MGF1(algorithm=hashes.SHA256()),
... algorithm=hashes.SHA256(),
... label=None
...)
...)
>>> plaintext == message
True

Padding

class cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding

Added in version 0.2.

name

class cryptography.hazmat.primitives.asymmetric.padding.PSS(mgf , salt_length)
Added in version 0.3.

Changed in version 0.4: Added salt_length parameter.

PSS (Probabilistic Signature Scheme) is a signature scheme defined in RFC 3447. It is more complex than
PKCS1 but possesses a security proof. This is the recommended padding algorithm for RSA signatures. It
cannot be used with RSA encryption.

Parameters

• mgf – A mask generation function object. At this time the only supported MGF is MGF1.

• salt_length (int) – The length of the salt. It is recommended that this be set to PSS.
DIGEST_LENGTH or PSS.MAX_LENGTH.

MAX_LENGTH

Pass this attribute to salt_length to get the maximum salt length available.

DIGEST_LENGTH

Added in version 37.0.0.

Pass this attribute to salt_length to set the salt length to the byte length of the digest passed when calling
sign. Note that this is not the length of the digest passed to MGF1.

118 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc3447.html
https://eprint.iacr.org/2001/062.pdf
https://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

AUTO

Added in version 37.0.0.

Pass this attribute to salt_length to automatically determine the salt length when verifying. Raises
ValueError if used when signing.

mgf

Type
MGF

Added in version 42.0.0.

The padding’s mask generation function (MGF).

class cryptography.hazmat.primitives.asymmetric.padding.OAEP(mgf , algorithm, label)
Added in version 0.4.

OAEP (Optimal Asymmetric Encryption Padding) is a padding scheme defined in RFC 3447. It provides proba-
bilistic encryption and is proven secure against several attack types. This is the recommended padding algorithm
for RSA encryption. It cannot be used with RSA signing.

Parameters

• mgf – A mask generation function object. At this time the only supported MGF is MGF1.

• algorithm – An instance of HashAlgorithm .

• label (bytes) – A label to apply. This is a rarely used field and should typically be set to
None or b"", which are equivalent.

algorithm

Type
HashAlgorithm

Added in version 42.0.0.

The padding’s hash algorithm.

mgf

Type
MGF

Added in version 42.0.0.

The padding’s mask generation function (MGF).

class cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15

Added in version 0.3.

PKCS1 v1.5 (also known as simply PKCS1) is a simple padding scheme developed for use with RSA keys. It is
defined in RFC 3447. This padding can be used for signing and encryption.

It is not recommended that PKCS1v15 be used for new applications, OAEP should be preferred for encryption and
PSS should be preferred for signatures.

Warning: Our implementation of PKCS1 v1.5 decryption is not constant time. See Known security limita-
tions for details.

2.3. Primitives 119

https://datatracker.ietf.org/doc/html/rfc3447.html
https://cseweb.ucsd.edu/~mihir/papers/oaep.pdf
https://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc3447.html

Cryptography Documentation, Release 43.0.0.dev1

cryptography.hazmat.primitives.asymmetric.padding.calculate_max_pss_salt_length(key,
hash_algorithm)

Added in version 1.5.

Parameters

• key – An RSA public or private key.

• hash_algorithm – A cryptography.hazmat.primitives.hashes.HashAlgorithm .

Returns int
The computed salt length.

Computes the length of the salt that PSS will use if PSS.MAX_LENGTH is used.

Mask generation functions

class cryptography.hazmat.primitives.asymmetric.padding.MGF

Added in version 37.0.0.

class cryptography.hazmat.primitives.asymmetric.padding.MGF1(algorithm)

Added in version 0.3.

Changed in version 0.6: Removed the deprecated salt_length parameter.

MGF1 (Mask Generation Function 1) is used as the mask generation function in PSS and OAEP padding. It takes
a hash algorithm.

Parameters
algorithm – An instance of HashAlgorithm .

Numbers

These classes hold the constituent components of an RSA key. They are useful only when more traditional Key Serial-
ization is unavailable.

class cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers(e, n)
Added in version 0.5.

The collection of integers that make up an RSA public key.

n

Type
int

The public modulus.

e

Type
int

The public exponent.

public_key()

Returns
A new instance of RSAPublicKey.

120 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers(p, q, d, dmp1, dmq1,
iqmp, public_numbers)

Added in version 0.5.

The collection of integers that make up an RSA private key.

Warning: With the exception of the integers contained in the RSAPublicNumbers all attributes of this class
must be kept secret. Revealing them will compromise the security of any cryptographic operations performed
with a key loaded from them.

public_numbers

Type
RSAPublicNumbers

The RSAPublicNumbers which makes up the RSA public key associated with this RSA private key.

p

Type
int

p, one of the two primes composing n.

q

Type
int

q, one of the two primes composing n.

d

Type
int

The private exponent.

dmp1

Type
int

A Chinese remainder theorem coefficient used to speed up RSA operations. Calculated as: d mod (p-1)

dmq1

Type
int

A Chinese remainder theorem coefficient used to speed up RSA operations. Calculated as: d mod (q-1)

iqmp

Type
int

A Chinese remainder theorem coefficient used to speed up RSA operations. Calculated as: q-1 mod p

2.3. Primitives 121

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm

Cryptography Documentation, Release 43.0.0.dev1

private_key(*, unsafe_skip_rsa_key_validation=False)

Parameters
unsafe_skip_rsa_key_validation (bool) – Added in version 39.0.0.

A keyword-only argument that defaults to False. If True RSA private keys will not be
validated. This significantly speeds up loading the keys, but is unsafe unless you are certain
the key is valid. User supplied keys should never be loaded with this parameter set to True.
If you do load an invalid key this way and attempt to use it OpenSSL may hang, crash, or
otherwise misbehave.

Returns
An instance of RSAPrivateKey.

Handling partial RSA private keys

If you are trying to load RSA private keys yourself you may find that not all parameters required by
RSAPrivateNumbers are available. In particular the Chinese Remainder Theorem (CRT) values dmp1, dmq1, iqmp
may be missing or present in a different form. For example, OpenPGP does not include the iqmp, dmp1 or dmq1
parameters.

The following functions are provided for users who want to work with keys like this without having to do the math
themselves.

cryptography.hazmat.primitives.asymmetric.rsa.rsa_crt_iqmp(p, q)
Added in version 0.4.

Computes the iqmp (also known as qInv) parameter from the RSA primes p and q.

cryptography.hazmat.primitives.asymmetric.rsa.rsa_crt_dmp1(private_exponent, p)
Added in version 0.4.

Computes the dmp1 parameter from the RSA private exponent (d) and prime p.

cryptography.hazmat.primitives.asymmetric.rsa.rsa_crt_dmq1(private_exponent, q)
Added in version 0.4.

Computes the dmq1 parameter from the RSA private exponent (d) and prime q.

cryptography.hazmat.primitives.asymmetric.rsa.rsa_recover_prime_factors(n, e, d)
Added in version 0.8.

Computes the prime factors (p, q) given the modulus, public exponent, and private exponent.

Note: When recovering prime factors this algorithm will always return p and q such that p > q. Note: before
1.5, this function always returned p and q such that p < q. It was changed because libraries commonly require
p > q.

Returns
A tuple (p, q)

122 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm
https://en.wikipedia.org/wiki/Pretty_Good_Privacy

Cryptography Documentation, Release 43.0.0.dev1

Key interfaces

class cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey

Added in version 0.2.

An RSA private key.

decrypt(ciphertext, padding)
Added in version 0.4.

Warning: Our implementation of PKCS1 v1.5 decryption is not constant time. See Known security
limitations for details.

Decrypt data that was encrypted with the public key.

Parameters

• ciphertext (bytes) – The ciphertext to decrypt.

• padding – An instance of AsymmetricPadding.

Return bytes
Decrypted data.

public_key()

Returns
RSAPublicKey

An RSA public key object corresponding to the values of the private key.

key_size

Type
int

The bit length of the modulus.

sign(data, padding, algorithm)

Added in version 1.4.

Changed in version 1.6: Prehashed can now be used as an algorithm.

Sign one block of data which can be verified later by others using the public key.

Parameters

• data (bytes-like) – The message string to sign.

• padding – An instance of AsymmetricPadding.

• algorithm – An instance of HashAlgorithm or Prehashed if the data you want to sign
has already been hashed.

Return bytes
Signature.

private_numbers()

Create a RSAPrivateNumbers object.

Returns
An RSAPrivateNumbers instance.

2.3. Primitives 123

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

private_bytes(encoding, format, encryption_algorithm)

Allows serialization of the key to bytes. Encoding (PEM or DER), format (TraditionalOpenSSL,
OpenSSH or PKCS8) and encryption algorithm (such as BestAvailableEncryption or NoEncryption)
are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum.

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

class cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey

Added in version 0.2.

An RSA public key.

encrypt(plaintext, padding)
Added in version 0.4.

Encrypt data with the public key.

Parameters

• plaintext (bytes) – The plaintext to encrypt.

• padding – An instance of AsymmetricPadding.

Return bytes
Encrypted data.

Raises
ValueError – The data could not be encrypted. One possible cause is if data is too large;
RSA keys can only encrypt data that is smaller than the key size.

key_size

Type
int

The bit length of the modulus.

public_numbers()

Create a RSAPublicNumbers object.

Returns
An RSAPublicNumbers instance.

public_bytes(encoding, format)
Allows serialization of the key to bytes. Encoding (PEM or DER) and format (SubjectPublicKeyInfo
or PKCS1) are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum.

Return bytes
Serialized key.

124 Chapter 2. Layout

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

verify(signature, data, padding, algorithm)

Added in version 1.4.

Changed in version 1.6: Prehashed can now be used as an algorithm.

Verify one block of data was signed by the private key associated with this public key.

Parameters

• signature (bytes-like) – The signature to verify.

• data (bytes-like) – The message string that was signed.

• padding – An instance of AsymmetricPadding.

• algorithm – An instance of HashAlgorithm or Prehashed if the data you want to
verify has already been hashed.

Returns
None

Raises
cryptography.exceptions.InvalidSignature – If the signature does not validate.

recover_data_from_signature(signature, padding, algorithm)

Added in version 3.3.

Recovers the signed data from the signature. The data typically contains the digest of the original message
string. The padding and algorithm parameters must match the ones used when the signature was created
for the recovery to succeed.

The algorithm parameter can also be set to None to recover all the data present in the signature, without
regard to its format or the hash algorithm used for its creation.

For PKCS1v15 padding, this method returns the data after removing the padding layer. For standard sig-
natures the data contains the full DigestInfo structure. For non-standard signatures, any data can be
returned, including zero-length data.

Normally you should use the verify() function to validate the signature. But for some non-standard
signature formats you may need to explicitly recover and validate the signed data. The following are some
examples:

• Some old Thawte and Verisign timestamp certificates without DigestInfo.

• Signed MD5/SHA1 hashes in TLS 1.1 or earlier (RFC 4346, section 4.7).

• IKE version 1 signatures without DigestInfo (RFC 2409, section 5.1).

Parameters

• signature (bytes) – The signature.

• padding – An instance of AsymmetricPadding. Recovery is only supported with some
of the padding types. (Currently only with PKCS1v15).

• algorithm – An instance of HashAlgorithm . Can be None to return the all the data
present in the signature.

Return bytes
The signed data.

Raises

• cryptography.exceptions.InvalidSignature – If the signature is invalid.

2.3. Primitives 125

https://datatracker.ietf.org/doc/html/rfc4346.html
https://datatracker.ietf.org/doc/html/rfc2409.html
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

• cryptography.exceptions.UnsupportedAlgorithm – If signature data recovery is
not supported with the provided padding type.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Diffie-Hellman key exchange

Note: For security and performance reasons we suggest using ECDH instead of DH where possible.

Diffie-Hellman key exchange (D–H) is a method that allows two parties to jointly agree on a shared secret using an
insecure channel.

Exchange Algorithm

For most applications the shared_key should be passed to a key derivation function. This allows mixing of additional
information into the key, derivation of multiple keys, and destroys any structure that may be present.

Warning: This example does not give forward secrecy and is only provided as a demonstration of the basic Diffie-
Hellman construction. For real world applications always use the ephemeral form described after this example.

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import dh
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDF
>>> # Generate some parameters. These can be reused.
>>> parameters = dh.generate_parameters(generator=2, key_size=2048)
>>> # Generate a private key for use in the exchange.
>>> server_private_key = parameters.generate_private_key()
>>> # In a real handshake the peer is a remote client. For this
>>> # example we'll generate another local private key though. Note that in
>>> # a DH handshake both peers must agree on a common set of parameters.
>>> peer_private_key = parameters.generate_private_key()
>>> shared_key = server_private_key.exchange(peer_private_key.public_key())
>>> # Perform key derivation.
>>> derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key)
>>> # And now we can demonstrate that the handshake performed in the
>>> # opposite direction gives the same final value
>>> same_shared_key = peer_private_key.exchange(
... server_private_key.public_key()
...)

(continues on next page)

126 Chapter 2. Layout

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Forward_secrecy

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> same_derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(same_shared_key)
>>> derived_key == same_derived_key

DHE (or EDH), the ephemeral form of this exchange, is strongly preferred over simple DH and provides forward
secrecy when used. You must generate a new private key using generate_private_key() for each exchange()
when performing an DHE key exchange. An example of the ephemeral form:

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import dh
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDF
>>> # Generate some parameters. These can be reused.
>>> parameters = dh.generate_parameters(generator=2, key_size=2048)
>>> # Generate a private key for use in the exchange.
>>> private_key = parameters.generate_private_key()
>>> # In a real handshake the peer_public_key will be received from the
>>> # other party. For this example we'll generate another private key and
>>> # get a public key from that. Note that in a DH handshake both peers
>>> # must agree on a common set of parameters.
>>> peer_public_key = parameters.generate_private_key().public_key()
>>> shared_key = private_key.exchange(peer_public_key)
>>> # Perform key derivation.
>>> derived_key = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key)
>>> # For the next handshake we MUST generate another private key, but
>>> # we can reuse the parameters.
>>> private_key_2 = parameters.generate_private_key()
>>> peer_public_key_2 = parameters.generate_private_key().public_key()
>>> shared_key_2 = private_key_2.exchange(peer_public_key_2)
>>> derived_key_2 = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=None,
... info=b'handshake data',
...).derive(shared_key_2)

To assemble a DHParameters and a DHPublicKey from primitive integers, you must first create the
DHParameterNumbers and DHPublicNumbers objects. For example, if p, g, and y are int objects received from
a peer:

pn = dh.DHParameterNumbers(p, g)
parameters = pn.parameters()
peer_public_numbers = dh.DHPublicNumbers(y, pn)
peer_public_key = peer_public_numbers.public_key()

2.3. Primitives 127

https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

Group parameters

cryptography.hazmat.primitives.asymmetric.dh.generate_parameters(generator, key_size)
Added in version 1.7.

Generate a new DH parameter group.

Parameters

• generator – The int to use as a generator. Must be 2 or 5.

• key_size – The bit length of the prime modulus to generate.

Returns
DH parameters as a new instance of DHParameters.

Raises
ValueError – If key_size is not at least 512.

class cryptography.hazmat.primitives.asymmetric.dh.DHParameters

Added in version 1.7.

generate_private_key()

Generate a DH private key. This method can be used to generate many new private keys from a single set
of parameters.

Returns
An instance of DHPrivateKey.

parameter_numbers()

Return the numbers that make up this set of parameters.

Returns
A DHParameterNumbers.

parameter_bytes(encoding, format)
Added in version 2.0.

Allows serialization of the parameters to bytes. Encoding (PEM or DER) and format (PKCS3) are chosen
to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the ParameterFormat enum. At the moment only PKCS3 is sup-
ported.

Return bytes
Serialized parameters.

128 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

Key interfaces

class cryptography.hazmat.primitives.asymmetric.dh.DHPrivateKey

Added in version 1.7.

key_size

The bit length of the prime modulus.

public_key()

Return the public key associated with this private key.

Returns
A DHPublicKey.

parameters()

Return the parameters associated with this private key.

Returns
A DHParameters.

exchange(peer_public_key)
Added in version 1.7.

Parameters
peer_public_key (DHPublicKey) – The public key for the peer.

Return bytes
The agreed key. The bytes are ordered in ‘big’ endian.

private_numbers()

Return the numbers that make up this private key.

Returns
A DHPrivateNumbers.

private_bytes(encoding, format, encryption_algorithm)

Added in version 1.8.

Allows serialization of the key to bytes. Encoding (PEM or DER), format (PKCS8) and encryption algorithm
(such as BestAvailableEncryption or NoEncryption) are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum.

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

class cryptography.hazmat.primitives.asymmetric.dh.DHPublicKey

Added in version 1.7.

key_size

The bit length of the prime modulus.

2.3. Primitives 129

Cryptography Documentation, Release 43.0.0.dev1

parameters()

Return the parameters associated with this private key.

Returns
A DHParameters.

public_numbers()

Return the numbers that make up this public key.

Returns
A DHPublicNumbers.

public_bytes(encoding, format)
Added in version 1.8.

Allows serialization of the key to bytes. Encoding (PEM or DER) and format (SubjectPublicKeyInfo)
are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum.

Return bytes
Serialized key.

Numbers

class cryptography.hazmat.primitives.asymmetric.dh.DHParameterNumbers(p, g, q=None)
Added in version 0.8.

The collection of integers that define a Diffie-Hellman group.

p

Type
int

The prime modulus value.

g

Type
int

The generator value. Must be 2 or greater.

q

Added in version 1.8.

Type
int

p subgroup order value.

parameters()

Added in version 1.7.

Returns
A new instance of DHParameters.

130 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.asymmetric.dh.DHPrivateNumbers(x, public_numbers)
Added in version 0.8.

The collection of integers that make up a Diffie-Hellman private key.

public_numbers

Type
DHPublicNumbers

The DHPublicNumbers which makes up the DH public key associated with this DH private key.

x

Type
int

The private value.

private_key()

Added in version 1.7.

Returns
A new instance of DHPrivateKey.

class cryptography.hazmat.primitives.asymmetric.dh.DHPublicNumbers(y, parameter_numbers)
Added in version 0.8.

The collection of integers that make up a Diffie-Hellman public key.

parameter_numbers

Type
DHParameterNumbers

The parameters for this DH group.

y

Type
int

The public value.

public_key()

Added in version 1.7.

Returns
A new instance of DHPublicKey.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3. Primitives 131

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

DSA

Note: DSA is a legacy algorithm and should generally be avoided in favor of choices like EdDSA using curve25519
or ECDSA.

DSA is a public-key algorithm for signing messages.

Generation

cryptography.hazmat.primitives.asymmetric.dsa.generate_private_key(key_size)
Added in version 0.5.

Changed in version 3.0: Added support for 4096-bit keys for some legacy applications that continue to use DSA
despite the wider cryptographic community’s ongoing protestations.

Generate a DSA private key from the given key size. This function will generate a new set of parameters and key
in one step.

Parameters
key_size (int) – The length of the modulus in bits. It should be either 1024, 2048, 3072, or
4096. For keys generated in 2015 this should be at least 2048 (See page 41).

Returns
An instance of DSAPrivateKey.

cryptography.hazmat.primitives.asymmetric.dsa.generate_parameters(key_size)
Added in version 0.5.

Changed in version 3.0: Added support for 4096-bit keys for some legacy applications that continue to use DSA
despite the wider cryptographic community’s ongoing protestations.

Generate DSA parameters.

Parameters
key_size (int) – The length of p. It should be either 1024, 2048, 3072, or 4096. For keys
generated in 2015 this should be at least 2048 (See page 41).

Returns
An instance of DSAParameters.

Signing

Using a DSAPrivateKey instance.

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import dsa
>>> private_key = dsa.generate_private_key(
... key_size=1024,
...)
>>> data = b"this is some data I'd like to sign"
>>> signature = private_key.sign(
... data,
... hashes.SHA256()
...)

132 Chapter 2. Layout

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Public-key_cryptography
https://words.filippo.io/dispatches/dsa/
https://docs.python.org/3/library/functions.html#int
https://www.cosic.esat.kuleuven.be/ecrypt/ecrypt2/documents/D.SPA.20.pdf
https://words.filippo.io/dispatches/dsa/
https://docs.python.org/3/library/functions.html#int
https://www.cosic.esat.kuleuven.be/ecrypt/ecrypt2/documents/D.SPA.20.pdf

Cryptography Documentation, Release 43.0.0.dev1

The signature is a bytes object, whose contents is DER encoded as described in RFC 3279. This can be decoded
using decode_dss_signature().

If your data is too large to be passed in a single call, you can hash it separately and pass that value using Prehashed .

>>> from cryptography.hazmat.primitives.asymmetric import utils
>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash)
>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> sig = private_key.sign(
... digest,
... utils.Prehashed(chosen_hash)
...)

Verification

Verification is performed using a DSAPublicKey instance. You can get a public key object with
load_pem_public_key(), load_der_public_key(), public_key() , or public_key().

>>> public_key = private_key.public_key()
>>> public_key.verify(
... signature,
... data,
... hashes.SHA256()
...)

verify() takes the signature in the same format as is returned by sign().

verify() will raise an InvalidSignature exception if the signature isn’t valid.

If your data is too large to be passed in a single call, you can hash it separately and pass that value using Prehashed .

>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash)
>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> public_key.verify(
... sig,
... digest,
... utils.Prehashed(chosen_hash)
...)

2.3. Primitives 133

https://datatracker.ietf.org/doc/html/rfc3279.html

Cryptography Documentation, Release 43.0.0.dev1

Numbers

class cryptography.hazmat.primitives.asymmetric.dsa.DSAParameterNumbers(p, q, g)
Added in version 0.5.

The collection of integers that make up a set of DSA parameters.

p

Type
int

The public modulus.

q

Type
int

The sub-group order.

g

Type
int

The generator.

parameters()

Returns
A new instance of DSAParameters.

class cryptography.hazmat.primitives.asymmetric.dsa.DSAPublicNumbers(y, parameter_numbers)
Added in version 0.5.

The collection of integers that make up a DSA public key.

y

Type
int

The public value y.

parameter_numbers

Type
DSAParameterNumbers

The DSAParameterNumbers associated with the public key.

public_key()

Returns
A new instance of DSAPublicKey.

class cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateNumbers(x, public_numbers)
Added in version 0.5.

The collection of integers that make up a DSA private key.

134 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

Warning: Revealing the value of xwill compromise the security of any cryptographic operations performed.

x

Type
int

The private value x.

public_numbers

Type
DSAPublicNumbers

The DSAPublicNumbers associated with the private key.

private_key()

Returns
A new instance of DSAPrivateKey.

Key interfaces

class cryptography.hazmat.primitives.asymmetric.dsa.DSAParameters

Added in version 0.3.

DSA parameters.

generate_private_key()

Added in version 0.5.

Generate a DSA private key. This method can be used to generate many new private keys from a single set
of parameters.

Returns
An instance of DSAPrivateKey.

parameter_numbers()

Create a DSAParameterNumbers object.

Returns
A DSAParameterNumbers instance.

class cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey

Added in version 0.3.

A DSA private key.

public_key()

Returns
DSAPublicKey

An DSA public key object corresponding to the values of the private key.

parameters()

Returns
DSAParameters

2.3. Primitives 135

https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

Cryptography Documentation, Release 43.0.0.dev1

The DSAParameters object associated with this private key.

key_size

Type
int

The bit length of q.

sign(data, algorithm)

Added in version 1.5.

Changed in version 1.6: Prehashed can now be used as an algorithm.

Sign one block of data which can be verified later by others using the public key.

Parameters

• data (bytes-like) – The message string to sign.

• algorithm – An instance of HashAlgorithm or Prehashed if the data you want to sign
has already been hashed.

Return bytes
Signature.

private_numbers()

Create a DSAPrivateNumbers object.

Returns
A DSAPrivateNumbers instance.

private_bytes(encoding, format, encryption_algorithm)

Allows serialization of the key to bytes. Encoding (PEM or DER), format (TraditionalOpenSSL, or
PKCS8) and encryption algorithm (such as BestAvailableEncryption or NoEncryption) are chosen
to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PrivateFormat enum.

• encryption_algorithm – An instance of an object conforming to the
KeySerializationEncryption interface.

Return bytes
Serialized key.

class cryptography.hazmat.primitives.asymmetric.dsa.DSAPublicKey

Added in version 0.3.

A DSA public key.

key_size

Type
int

The bit length of q.

parameters()

Returns
DSAParameters

136 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

The DSAParameters object associated with this public key.

public_numbers()

Create a DSAPublicNumbers object.

Returns
A DSAPublicNumbers instance.

public_bytes(encoding, format)
Allows serialization of the key to bytes. Encoding (PEM or DER) and format (SubjectPublicKeyInfo)
are chosen to define the exact serialization.

Parameters

• encoding – A value from the Encoding enum.

• format – A value from the PublicFormat enum.

Return bytes
Serialized key.

verify(signature, data, algorithm)

Added in version 1.5.

Changed in version 1.6: Prehashed can now be used as an algorithm.

Verify one block of data was signed by the private key associated with this public key.

Parameters

• signature (bytes-like) – The signature to verify.

• data (bytes-like) – The message string that was signed.

• algorithm – An instance of HashAlgorithm or Prehashed if the data you want to sign
has already been hashed.

Returns
None

Raises
cryptography.exceptions.InvalidSignature – If the signature does not validate.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Key Serialization

There are several common schemes for serializing asymmetric private and public keys to bytes. They generally support
encryption of private keys and additional key metadata.

Many serialization formats support multiple different types of asymmetric keys and will return an instance of the
appropriate type. You should check that the returned key matches the type your application expects when using these
methods.

2.3. Primitives 137

Cryptography Documentation, Release 43.0.0.dev1

>>> from cryptography.hazmat.primitives.asymmetric import dsa, rsa
>>> from cryptography.hazmat.primitives.serialization import load_pem_private_
→˓key
>>> key = load_pem_private_key(pem_data, password=None)
>>> if isinstance(key, rsa.RSAPrivateKey):
... signature = sign_with_rsa_key(key, message)
... elif isinstance(key, dsa.DSAPrivateKey):
... signature = sign_with_dsa_key(key, message)
... else:
... raise TypeError

Key dumping

The serialization module contains functions for loading keys from bytes. To dump a key object to bytes, you
must call the appropriate method on the key object. Documentation for these methods in found in the rsa, dsa, and
ec module documentation.

PEM

PEM is an encapsulation format, meaning keys in it can actually be any of several different key types. However these
are all self-identifying, so you don’t need to worry about this detail. PEM keys are recognizable because they all begin
with -----BEGIN {format}----- and end with -----END {format}-----.

Note: A PEM block which starts with -----BEGIN CERTIFICATE----- is not a public or private key, it’s an X.509
Certificate. You can load it using load_pem_x509_certificate() and extract the public key with Certificate.
public_key.

cryptography.hazmat.primitives.serialization.load_pem_private_key(data, password, *, un-
safe_skip_rsa_key_validation=False)

Added in version 0.6.

Note: SSH private keys are a different format and must be loaded with load_ssh_private_key().

Deserialize a private key from PEM encoded data to one of the supported asymmetric private key types.

Parameters

• data (bytes-like) – The PEM encoded key data.

• password (bytes-like) – The password to use to decrypt the data. Should be None if the
private key is not encrypted.

• unsafe_skip_rsa_key_validation (bool) – Added in version 39.0.0.

A keyword-only argument that defaults to False. If True RSA private keys will not be
validated. This significantly speeds up loading the keys, but is unsafe unless you are certain
the key is valid. User supplied keys should never be loaded with this parameter set to True.
If you do load an invalid key this way and attempt to use it OpenSSL may hang, crash, or
otherwise misbehave.

Returns
One of Ed25519PrivateKey, X25519PrivateKey, Ed448PrivateKey, X448PrivateKey,

138 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#bool

Cryptography Documentation, Release 43.0.0.dev1

RSAPrivateKey, DSAPrivateKey, DHPrivateKey, or EllipticCurvePrivateKey depend-
ing on the contents of data.

Raises

• ValueError – If the PEM data could not be decrypted or if its structure could not be decoded
successfully.

• TypeError – If a password was given and the private key was not encrypted. Or if the key
was encrypted but no password was supplied.

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key type is not
supported by the OpenSSL version cryptography is using.

cryptography.hazmat.primitives.serialization.load_pem_public_key(data)
Added in version 0.6.

Deserialize a public key from PEM encoded data to one of the supported asymmetric public key types. The PEM
encoded data is typically a subjectPublicKeyInfo payload as specified in RFC 5280.

>>> from cryptography.hazmat.primitives.serialization import load_pem_public_key
>>> key = load_pem_public_key(public_pem_data)
>>> isinstance(key, rsa.RSAPublicKey)
True

Parameters
data (bytes) – The PEM encoded key data.

Returns
One of Ed25519PublicKey, X25519PublicKey, Ed448PublicKey, X448PublicKey,
RSAPublicKey, DSAPublicKey, DHPublicKey, or EllipticCurvePublicKey depending on
the contents of data.

Raises

• ValueError – If the PEM data’s structure could not be decoded successfully.

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key type is not
supported by the OpenSSL version cryptography is using.

cryptography.hazmat.primitives.serialization.load_pem_parameters(data)
.. versionadded:: 2.0

Deserialize parameters from PEM encoded data to one of the supported asymmetric parameters types.

>>> from cryptography.hazmat.primitives.serialization import load_pem_parameters
>>> from cryptography.hazmat.primitives.asymmetric import dh
>>> parameters = load_pem_parameters(parameters_pem_data)
>>> isinstance(parameters, dh.DHParameters)
True

Parameters
data (bytes) – The PEM encoded parameters data.

Returns
Currently only DHParameters supported.

Raises

• ValueError – If the PEM data’s structure could not be decoded successfully.

2.3. Primitives 139

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://datatracker.ietf.org/doc/html/rfc5280.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key type is not
supported by the OpenSSL version cryptography is using.

DER

DER is an ASN.1 encoding type. There are no encapsulation boundaries and the data is binary. DER keys may be in a
variety of formats, but as long as you know whether it is a public or private key the loading functions will handle the
rest.

cryptography.hazmat.primitives.serialization.load_der_private_key(data, password, *, un-
safe_skip_rsa_key_validation=False)

Added in version 0.8.

Deserialize a private key from DER encoded data to one of the supported asymmetric private key types.

Parameters

• data (bytes-like) – The DER encoded key data.

• password (bytes-like) – The password to use to decrypt the data. Should be None if the
private key is not encrypted.

• unsafe_skip_rsa_key_validation (bool) – Added in version 39.0.0.

A keyword-only argument that defaults to False. If True RSA private keys will not be
validated. This significantly speeds up loading the keys, but is unsafe unless you are certain
the key is valid. User supplied keys should never be loaded with this parameter set to True.
If you do load an invalid key this way and attempt to use it OpenSSL may hang, crash, or
otherwise misbehave.

Returns
One of Ed25519PrivateKey, X25519PrivateKey, Ed448PrivateKey, X448PrivateKey,
RSAPrivateKey, DSAPrivateKey, DHPrivateKey, or EllipticCurvePrivateKey depend-
ing on the contents of data.

Raises

• ValueError – If the DER data could not be decrypted or if its structure could not be decoded
successfully.

• TypeError – If a password was given and the private key was not encrypted. Or if the key
was encrypted but no password was supplied.

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key type is not
supported by the OpenSSL version cryptography is using.

>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> from cryptography.hazmat.primitives.serialization import load_der_private_key
>>> key = load_der_private_key(der_data, password=None)
>>> isinstance(key, rsa.RSAPrivateKey)
True

cryptography.hazmat.primitives.serialization.load_der_public_key(data)
Added in version 0.8.

Deserialize a public key from DER encoded data to one of the supported asymmetric public key types. The DER
encoded data is typically a subjectPublicKeyInfo payload as specified in RFC 5280.

Parameters
data (bytes) – The DER encoded key data.

140 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://datatracker.ietf.org/doc/html/rfc5280.html
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Returns
One of Ed25519PublicKey, X25519PublicKey, Ed448PublicKey, X448PublicKey,
RSAPublicKey, DSAPublicKey, DHPublicKey, or EllipticCurvePublicKey depending on
the contents of data.

Raises

• ValueError – If the DER data’s structure could not be decoded successfully.

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key type is not
supported by the OpenSSL version cryptography is using.

>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> from cryptography.hazmat.primitives.serialization import load_der_public_key
>>> key = load_der_public_key(public_der_data)
>>> isinstance(key, rsa.RSAPublicKey)
True

cryptography.hazmat.primitives.serialization.load_der_parameters(data)
Added in version 2.0.

Deserialize parameters from DER encoded data to one of the supported asymmetric parameters types.

Parameters
data (bytes) – The DER encoded parameters data.

Returns
Currently only DHParameters supported.

Raises

• ValueError – If the DER data’s structure could not be decoded successfully.

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key type is not
supported by the OpenSSL version cryptography is using.

>>> from cryptography.hazmat.primitives.asymmetric import dh
>>> from cryptography.hazmat.primitives.serialization import load_der_parameters
>>> parameters = load_der_parameters(parameters_der_data)
>>> isinstance(parameters, dh.DHParameters)
True

OpenSSH Public Key

The format used by OpenSSH to store public keys, as specified in RFC 4253.

An example RSA key in OpenSSH format (line breaks added for formatting purposes):

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDDu/XRP1kyK6Cgt36gts9XAk
FiiuJLW6RU0j3KKVZSs1I7Z3UmU9/9aVh/rZV43WQG8jaR6kkcP4stOR0DEtll
PDA7ZRBnrfiHpSQYQ874AZaAoIjgkv7DBfsE6gcDQLub0PFjWyrYQUJhtOLQEK
vY/G0vt2iRL3juawWmCFdTK3W3XvwAdgGk71i6lHt+deOPNEPN2H58E4odrZ2f
sxn/adpDqfb2sM0kPwQs0aWvrrKGvUaustkivQE4XWiSFnB0oJB/lKK/CKVKuy
///ImSCGHQRvhwariN2tvZ6CBNSLh3iQgeB0AkyJlng7MXB2qYq/Ci2FUOryCX
2MzHvnbv testkey@localhost

DSA keys look almost identical but begin with ssh-dss rather than ssh-rsa. ECDSA keys have a slightly different
format, they begin with ecdsa-sha2-{curve}.

2.3. Primitives 141

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://datatracker.ietf.org/doc/html/rfc4253.html

Cryptography Documentation, Release 43.0.0.dev1

cryptography.hazmat.primitives.serialization.SSHPublicKeyTypes

Added in version 40.0.0.

Type alias: A union of public key types accepted for SSH: RSAPublicKey, DSAPublicKey,
EllipticCurvePublicKey , or Ed25519PublicKey.

cryptography.hazmat.primitives.serialization.load_ssh_public_key(data)
Added in version 0.7.

Note: SSH DSA key support is deprecated and will be removed in a future release.

Deserialize a public key from OpenSSH (RFC 4253 and PROTOCOL.certkeys) encoded data to an instance of
the public key type.

Parameters
data (bytes-like) – The OpenSSH encoded key data.

Returns
One of SSHPublicKeyTypes depending on the contents of data.

Raises

• ValueError – If the OpenSSH data could not be properly decoded or if the key is not in the
proper format.

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key is of a type
that is not supported.

OpenSSH Private Key

The format used by OpenSSH to store private keys, as approximately specified in PROTOCOL.key.

An example ECDSA key in OpenSSH format:

-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAaAAAABNlY2RzYS
1zaGEyLW5pc3RwMjU2AAAACG5pc3RwMjU2AAAAQQRI0fWnI1CxX7qYqp0ih6bxjhGmUrZK
/Axf8vhM8Db3oH7CFR+JdL715lUdu4XCWvQZKVf60/h3kBFhuxQC23XjAAAAqKPzVaOj81
WjAAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBEjR9acjULFfupiq
nSKHpvGOEaZStkr8DF/y+EzwNvegfsIVH4l0vvXmVR27hcJa9BkpV/rT+HeQEWG7FALbde
MAAAAga/VGV2asRlL3kXXao0aochQ59nXHA2xEGeAoQd952r0AAAAJbWFya29AdmZmAQID
BAUGBw==
-----END OPENSSH PRIVATE KEY-----

cryptography.hazmat.primitives.serialization.SSHPrivateKeyTypes

Added in version 40.0.0.

Type alias: A union of private key types accepted for SSH: RSAPrivateKey, DSAPrivateKey,
EllipticCurvePrivateKey or Ed25519PrivateKey.

cryptography.hazmat.primitives.serialization.load_ssh_private_key(data, password)
Added in version 3.0.

Note: SSH DSA key support is deprecated and will be removed in a future release.

142 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc4253.html
https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key

Cryptography Documentation, Release 43.0.0.dev1

Deserialize a private key from OpenSSH encoded data to an instance of the private key type.

Parameters

• data (bytes-like) – The PEM encoded OpenSSH private key data.

• password (bytes) – Password bytes to use to decrypt password-protected key. Or None if
not needed.

Returns
One of SSHPrivateKeyTypes depending on the contents of data.

Raises

• ValueError – If the OpenSSH data could not be properly decoded, if the key is not in the
proper format or the incorrect password was provided.

• cryptography.exceptions.UnsupportedAlgorithm – If the serialized key is of a type
that is not supported.

OpenSSH Certificate

The format used by OpenSSH for certificates, as specified in PROTOCOL.certkeys.

cryptography.hazmat.primitives.serialization.SSHCertPublicKeyTypes

Added in version 40.0.0.

Type alias: A union of public key types supported for SSH certificates: RSAPublicKey,
EllipticCurvePublicKey or Ed25519PublicKey

cryptography.hazmat.primitives.serialization.SSHCertPrivateKeyTypes

Added in version 40.0.0.

Type alias: A union of private key types supported for SSH certificates: RSAPrivateKey,
EllipticCurvePrivateKey or Ed25519PrivateKey

cryptography.hazmat.primitives.serialization.load_ssh_public_identity(data)
Added in version 40.0.0.

Note: This function does not support parsing certificates with DSA public keys or signatures from DSA certifi-
cate authorities. DSA is a deprecated algorithm and should not be used.

Deserialize an OpenSSH encoded identity to an instance of SSHCertificate or the appropriate public key type.
Parsing a certificate does not verify anything. It is up to the caller to perform any necessary verification.

Parameters
data (bytes) – The OpenSSH encoded data.

Returns
SSHCertificate or one of SSHCertPublicKeyTypes.

Raises

• ValueError – If the OpenSSH data could not be properly decoded.

• cryptography.exceptions.UnsupportedAlgorithm – If the data contains a public key
type that is not supported.

class cryptography.hazmat.primitives.serialization.SSHCertificate

Added in version 40.0.0.

2.3. Primitives 143

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

nonce

Type
bytes

The nonce field is a CA-provided random value of arbitrary length (but typically 16 or 32 bytes) included
to make attacks that depend on inducing collisions in the signature hash infeasible.

public_key()

The public key contained in the certificate, one of SSHCertPublicKeyTypes.

serial

Type
int

Serial is an optional certificate serial number set by the CA to provide an abbreviated way to refer to
certificates from that CA. If a CA does not wish to number its certificates, it must set this field to zero.

type

Type
SSHCertificateType

Type specifies whether this certificate is for identification of a user or a host.

key_id

Type
bytes

This is a free-form text field that is filled in by the CA at the time of signing; the intention is that the contents
of this field are used to identify the identity principal in log messages.

valid_principals

Type
list[bytes]

“valid principals” is a list containing one or more principals as byte strings. These principals list the names
for which this certificate is valid; hostnames for host certificates and usernames for user certificates. As a
special case, an empty list means the certificate is valid for any principal of the specified type.

valid_after

Type
int

An integer representing the Unix timestamp (in UTC) after which the certificate is valid. This time is
inclusive.

valid_before

Type
int

An integer representing the Unix timestamp (in UTC) before which the certificate is valid. This time is not
inclusive.

critical_options

Type
dict[bytes, bytes]

144 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Critical options is a dict of zero or more options that are critical for the certificate to be considered valid.
If any of these options are not supported by the implementation, the certificate must be rejected.

extensions

Type
dict[bytes, bytes]

Extensions is a dict of zero or more options that are non-critical for the certificate to be considered valid. If
any of these options are not supported by the implementation, the implementation may safely ignore them.

signature_key()

The public key used to sign the certificate, one of SSHCertPublicKeyTypes.

verify_cert_signature()

Warning: This method does not validate anything about whether the signing key is trusted! Callers
are responsible for validating trust in the signer.

Validates that the signature on the certificate was created by the private key associated with the certificate’s
signature key and that the certificate has not been changed since signing.

Returns
None

Raises
InvalidSignature if the signature is invalid.

public_bytes()

Returns
The serialized certificate in OpenSSH format.

Return type
bytes

class cryptography.hazmat.primitives.serialization.SSHCertificateType

Added in version 40.0.0.

An enumeration of the types of SSH certificates.

USER

The cert is intended for identification of a user. Corresponds to the value 1.

HOST

The cert is intended for identification of a host. Corresponds to the value 2.

SSH Certificate Builder

class cryptography.hazmat.primitives.serialization.SSHCertificateBuilder

Added in version 40.0.0.

Note: This builder does not support generating certificates with DSA public keys or creating signatures with
DSA certificate authorities. DSA is a deprecated algorithm and should not be used.

2.3. Primitives 145

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

>>> import datetime
>>> from cryptography.hazmat.primitives.asymmetric import ec
>>> from cryptography.hazmat.primitives.serialization import (
... SSHCertificateType, SSHCertificateBuilder
...)
>>> signing_key = ec.generate_private_key(ec.SECP256R1())
>>> public_key = ec.generate_private_key(ec.SECP256R1()).public_key()
>>> valid_after = datetime.datetime(
... 2023, 1, 1, 1, tzinfo=datetime.timezone.utc
...).timestamp()
>>> valid_before = datetime.datetime(
... 2023, 7, 1, 1, tzinfo=datetime.timezone.utc
...).timestamp()
>>> key_id = b"a_key_id"
>>> valid_principals = [b"eve", b"alice"]
>>> builder = (
... SSHCertificateBuilder()
... .public_key(public_key)
... .type(SSHCertificateType.USER)
... .valid_before(valid_before)
... .valid_after(valid_after)
... .key_id(b"a_key_id")
... .valid_principals(valid_principals)
... .add_extension(b"no-touch-required", b"")
...)
>>> builder.sign(signing_key).public_bytes()
b'...'

public_key(public_key)

Parameters
public_key (SSHCertPublicKeyTypes) – The public key to be included in the certificate.
This value is required.

serial(serial)

Parameters
serial (int) – The serial number to be included in the certificate. This is not a required
value and will be set to zero if not provided. Value must be between 0 and 2:sup:64 - 1,
inclusive.

type(type)

Parameters
type (SSHCertificateType) – The type of the certificate. There are two options, user or
host.

key_id(key_id)

Parameters
key_id (bytes) – The key ID to be included in the certificate. This is not a required value.

valid_principals(valid_principals)

Parameters
valid_principals (list[bytes]) – A list of principals that the certificate is valid for.
This is a required value unless valid_for_all_principals() has been called.

146 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

valid_for_all_principals()

Marks the certificate as valid for all principals. This cannot be set if principals have been added via
valid_principals().

valid_after(valid_after)

Parameters
valid_after (int) – The Unix timestamp (in UTC) that marks the activation time for the
certificate. This is a required value.

valid_before(valid_before)

Parameters
valid_before (int) – The Unix timestamp (in UTC) that marks the expiration time for the
certificate. This is a required value.

add_critical_option(name, value)

Parameters

• name (bytes) – The name of the critical option to add. No duplicates are allowed.

• value (bytes) – The value of the critical option to add. This is commonly an empty byte
string.

add_extension(name, value)

Parameters

• name (bytes) – The name of the extension to add. No duplicates are allowed.

• value (bytes) – The value of the extension to add.

sign(private_key)

Parameters
private_key (SSHCertPrivateKeyTypes) – The private key that will be used to sign the
certificate.

Returns
The signed certificate.

Return type
SSHCertificate

PKCS12

PKCS12 is a binary format described in RFC 7292. It can contain certificates, keys, and more. PKCS12 files commonly
have a pfx or p12 file suffix.

Note: cryptography only supports a single private key and associated certificates when parsing PKCS12 files at this
time.

cryptography.hazmat.primitives.serialization.pkcs12.PKCS12PrivateKeyTypes

Added in version 40.0.0.

Type alias: A union of private key types supported for PKCS12 serialization: RSAPrivateKey ,
EllipticCurvePrivateKey , Ed25519PrivateKey , Ed448PrivateKey or DSAPrivateKey.

2.3. Primitives 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc7292.html

Cryptography Documentation, Release 43.0.0.dev1

cryptography.hazmat.primitives.serialization.pkcs12.load_key_and_certificates(data,
password)

Added in version 2.5.

Deserialize a PKCS12 blob.

Parameters

• data (bytes-like) – The binary data.

• password (bytes-like) – The password to use to decrypt the data. None if the PKCS12 is not
encrypted.

Returns
A tuple of (private_key, certificate, additional_certificates). private_key is
a private key type or None, certificate is either the Certificate whose public key matches
the private key in the PKCS 12 object or None, and additional_certificates is a list of all
other Certificate instances in the PKCS12 object.

cryptography.hazmat.primitives.serialization.pkcs12.load_pkcs12(data, password)
Added in version 36.0.0.

Deserialize a PKCS12 blob, and return a PKCS12KeyAndCertificates instance.

Parameters

• data (bytes-like) – The binary data.

• password (bytes-like) – The password to use to decrypt the data. None if the PKCS12 is not
encrypted.

Returns
A PKCS12KeyAndCertificates instance.

cryptography.hazmat.primitives.serialization.pkcs12.serialize_key_and_certificates(name,
key,
cert,
cas,
encryp-
tion_algorithm)

Added in version 3.0.

Note: With OpenSSL 3.0.0+ the defaults for encryption when serializing PKCS12 have changed and some
versions of Windows and macOS will not be able to read the new format. Maximum compatibility can be
achieved by using SHA1 for MAC algorithm and PBESv1SHA1And3KeyTripleDESCBC for encryption algorithm
as seen in the example below. However, users should avoid this unless required for compatibility.

Warning: PKCS12 encryption is typically not secure and should not be used as a security mechanism. Wrap
a PKCS12 blob in a more secure envelope if you need to store or send it safely.

Serialize a PKCS12 blob.

Note: Due to a bug in Firefox it’s not possible to load unencrypted PKCS12 blobs in Firefox.

Parameters

148 Chapter 2. Layout

https://bugzilla.mozilla.org/show_bug.cgi?id=773111

Cryptography Documentation, Release 43.0.0.dev1

• name (bytes) – The friendly name to use for the supplied certificate and key.

• key (PKCS12PrivateKeyTypes) – The private key to include in the structure.

• cert (Certificate or None) – The certificate associated with the private key.

• cas (None, or list of Certificate or PKCS12Certificate) – An optional set of certifi-
cates to also include in the structure. If a PKCS12Certificate is given, its friendly name
will be serialized.

• encryption_algorithm – The encryption algorithm that should be used for the key and
certificate. An instance of an object conforming to the KeySerializationEncryption
interface. PKCS12 encryption is typically very weak and should not be used as a security
boundary.

Return bytes
Serialized PKCS12.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives.serialization import␣
→˓BestAvailableEncryption, load_pem_private_key, pkcs12
>>> cert = x509.load_pem_x509_certificate(ca_cert)
>>> key = load_pem_private_key(ca_key, None)
>>> p12 = pkcs12.serialize_key_and_certificates(
... b"friendlyname", key, cert, None, BestAvailableEncryption(b"password")
...)

This example uses an encryption_builder() to create a PKCS12 with more compatible, but substantially less
secure, encryption.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.serialization import PrivateFormat, load_
→˓pem_private_key, pkcs12
>>> encryption = (
... PrivateFormat.PKCS12.encryption_builder().
... kdf_rounds(50000).
... key_cert_algorithm(pkcs12.PBES.PBESv1SHA1And3KeyTripleDESCBC).
... hmac_hash(hashes.SHA1()).build(b"my password")
...)
>>> cert = x509.load_pem_x509_certificate(ca_cert)
>>> key = load_pem_private_key(ca_key, None)
>>> p12 = pkcs12.serialize_key_and_certificates(
... b"friendlyname", key, cert, None, encryption
...)

class cryptography.hazmat.primitives.serialization.pkcs12.PKCS12Certificate

Added in version 36.0.0.

Represents additional data provided for a certificate in a PKCS12 file.

certificate

A Certificate instance.

friendly_name

Type
bytes or None

2.3. Primitives 149

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

An optional byte string containing the friendly name of the certificate.

class cryptography.hazmat.primitives.serialization.pkcs12.PKCS12KeyAndCertificates

Added in version 36.0.0.

A simplified representation of a PKCS12 file.

key

An optional private key belonging to cert (see PKCS12PrivateKeyTypes).

cert

An optional PKCS12Certificate instance belonging to the private key key.

additional_certs

A list of PKCS12Certificate instances.

class cryptography.hazmat.primitives.serialization.pkcs12.PBES

Added in version 38.0.0.

An enumeration of password-based encryption schemes used in PKCS12. These values are used with
KeySerializationEncryptionBuilder.

PBESv1SHA1And3KeyTripleDESCBC

PBESv1 using SHA1 as the KDF PRF and 3-key triple DES-CBC as the cipher.

PBESv2SHA256AndAES256CBC

PBESv2 using SHA256 as the KDF PRF and AES256-CBC as the cipher. This is only supported on
OpenSSL 3.0.0 or newer.

PKCS7

PKCS7 is a format described in RFC 2315, among other specifications. It can contain certificates, CRLs, and much
more. PKCS7 files commonly have a p7b, p7m, or p7s file suffix but other suffixes are also seen in the wild.

Note: cryptography only supports parsing certificates from PKCS7 files at this time.

cryptography.hazmat.primitives.serialization.pkcs7.PKCS7HashTypes

Added in version 40.0.0.

Type alias: A union of hash types supported for PKCS7 serialization: SHA1, SHA224, SHA256, SHA384, or
SHA512.

cryptography.hazmat.primitives.serialization.pkcs7.PKCS7PrivateKeyTypes

Added in version 40.0.0.

Type alias: A union of private key types supported for PKCS7 serialization: RSAPrivateKey or
EllipticCurvePrivateKey

cryptography.hazmat.primitives.serialization.pkcs7.load_pem_pkcs7_certificates(data)
Added in version 3.1.

Deserialize a PEM encoded PKCS7 blob to a list of certificates. PKCS7 can contain many other types of data,
including CRLs, but this function will ignore everything except certificates.

Parameters
data (bytes) – The data.

150 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc2315.html
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Returns
A list of Certificate.

Raises

• ValueError – If the PKCS7 data could not be loaded.

• cryptography.exceptions.UnsupportedAlgorithm – If the PKCS7 data is of a type
that is not supported.

cryptography.hazmat.primitives.serialization.pkcs7.load_der_pkcs7_certificates(data)
Added in version 3.1.

Deserialize a DER encoded PKCS7 blob to a list of certificates. PKCS7 can contain many other types of data,
including CRLs, but this function will ignore everything except certificates.

Parameters
data (bytes) – The data.

Returns
A list of Certificate.

Raises

• ValueError – If the PKCS7 data could not be loaded.

• cryptography.exceptions.UnsupportedAlgorithm – If the PKCS7 data is of a type
that is not supported.

cryptography.hazmat.primitives.serialization.pkcs7.serialize_certificates(certs, encoding)
Added in version 37.0.0.

Serialize a list of certificates to a PKCS7 structure.

Parameters

• certs – A list of Certificate.

• encoding – PEM or DER .

Returns bytes
The serialized PKCS7 data.

class cryptography.hazmat.primitives.serialization.pkcs7.PKCS7SignatureBuilder

The PKCS7 signature builder can create both basic PKCS7 signed messages as well as S/MIME messages, which
are commonly used in email. S/MIME has multiple versions, but this implements a subset of RFC 2632, also
known as S/MIME Version 3.

Added in version 3.2.

>>> from cryptography import x509
>>> from cryptography.hazmat.primitives import hashes, serialization
>>> from cryptography.hazmat.primitives.serialization import pkcs7
>>> cert = x509.load_pem_x509_certificate(ca_cert)
>>> key = serialization.load_pem_private_key(ca_key, None)
>>> options = [pkcs7.PKCS7Options.DetachedSignature]
>>> pkcs7.PKCS7SignatureBuilder().set_data(
... b"data to sign"
...).add_signer(
... cert, key, hashes.SHA256()
...).sign(
... serialization.Encoding.SMIME, options

(continues on next page)

2.3. Primitives 151

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://datatracker.ietf.org/doc/html/rfc2632.html

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

...)
b'...'

set_data(data)

Parameters
data (bytes-like) – The data to be hashed and signed.

add_signer(certificate, private_key, hash_algorithm, *, rsa_padding=None)

Parameters

• certificate – The Certificate.

• private_key – The RSAPrivateKey or EllipticCurvePrivateKey associated with
the certificate provided (matches PKCS7PrivateKeyTypes).

• hash_algorithm – The HashAlgorithm that will be used to generate the signature. This
must be one of the types in PKCS7HashTypes.

• rsa_padding – Added in version 42.0.0.

This is a keyword-only argument. If private_key is an RSAPrivateKey then this can be
set to either PKCS1v15 or PSS to sign with those respective paddings. If this is None then
RSA keys will default to PKCS1v15 padding. All other key types must not pass a value
other than None.

add_certificate(certificate)
Add an additional certificate (typically used to help build a verification chain) to the PKCS7 structure. This
method may be called multiple times to add as many certificates as desired.

Parameters
certificate – The Certificate to add.

sign(encoding, options)

Parameters

• encoding – PEM , DER , or SMIME.

• options – A list of PKCS7Options.

Returns bytes
The signed PKCS7 message.

class cryptography.hazmat.primitives.serialization.pkcs7.PKCS7Options

Added in version 3.2.

An enumeration of options for PKCS7 signature creation.

Text

The text option adds text/plain headers to an S/MIME message when serializing to SMIME. This option
is disallowed with DER serialization.

Binary

Signing normally converts line endings (LF to CRLF). When passing this option the data will not be con-
verted.

DetachedSignature

Don’t embed the signed data within the ASN.1. When signing with SMIME this also results in the data being
added as clear text before the PEM encoded structure.

152 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

NoCapabilities

PKCS7 structures contain a MIMECapabilities section inside the authenticatedAttributes. Passing
this as an option removes MIMECapabilities.

NoAttributes

PKCS7 structures contain an authenticatedAttributes section. Passing this as an option removes
that section. Note that if you pass NoAttributes you can’t pass NoCapabilities since NoAttributes
removes MIMECapabilities and more.

NoCerts

Don’t include the signer’s certificate in the PKCS7 structure. This can reduce the size of the signature but
requires that the recipient can obtain the signer’s certificate by other means (for example from a previously
signed message).

Serialization Formats

class cryptography.hazmat.primitives.serialization.PrivateFormat

Added in version 0.8.

An enumeration for private key formats. Used with the private_bytes method available on RSAPrivateKey
, EllipticCurvePrivateKey , DHPrivateKey and DSAPrivateKey.

TraditionalOpenSSL

Frequently known as PKCS#1 format. Still a widely used format, but generally considered legacy.

A PEM encoded RSA key will look like:

-----BEGIN RSA PRIVATE KEY-----
...
-----END RSA PRIVATE KEY-----

PKCS8

A more modern format for serializing keys which allows for better encryption. Choose this unless you have
explicit legacy compatibility requirements.

A PEM encoded key will look like:

-----BEGIN PRIVATE KEY-----
...
-----END PRIVATE KEY-----

Raw

Added in version 2.5.

A raw format used by X448 key exchange. It is a binary format and is invalid for other key types.

OpenSSH

Added in version 3.0.

Custom private key format for OpenSSH, internals are based on SSH protocol and not ASN1. Requires
PEM encoding.

A PEM encoded OpenSSH key will look like:

-----BEGIN OPENSSH PRIVATE KEY-----
...
-----END OPENSSH PRIVATE KEY-----

2.3. Primitives 153

Cryptography Documentation, Release 43.0.0.dev1

PKCS12

Added in version 38.0.0.

The PKCS#12 format is a binary format used to store private keys and certificates. This attribute is used in
conjunction with encryption_builder() to allow control of the encryption algorithm and parameters.

>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.serialization import PrivateFormat,␣
→˓pkcs12
>>> encryption = (
... PrivateFormat.PKCS12.encryption_builder().
... kdf_rounds(50000).
... key_cert_algorithm(pkcs12.PBES.PBESv2SHA256AndAES256CBC).
... hmac_hash(hashes.SHA256()).build(b"my password")
...)
>>> p12 = pkcs12.serialize_key_and_certificates(
... b"friendlyname", key, None, None, encryption
...)

encryption_builder()

Added in version 38.0.0.

Returns a builder for configuring how values are encrypted with this format. You must call this method on
an element of the enumeration. For example, PrivateFormat.OpenSSH.encryption_builder().

For most use cases, BestAvailableEncryption is preferred.

Returns
A new instance of KeySerializationEncryptionBuilder

>>> from cryptography.hazmat.primitives import serialization
>>> encryption = (
... serialization.PrivateFormat.OpenSSH.encryption_builder().kdf_rounds(30).
→˓build(b"my password")
...)
>>> key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.OpenSSH,
... encryption_algorithm=encryption
...)
b'-----BEGIN OPENSSH PRIVATE KEY-----\n...\n-----END OPENSSH PRIVATE KEY-----\n'

class cryptography.hazmat.primitives.serialization.PublicFormat

Added in version 0.8.

An enumeration for public key formats. Used with the public_bytes method available on RSAPublicKey ,
EllipticCurvePublicKey , DHPublicKey , and DSAPublicKey.

SubjectPublicKeyInfo

This is the typical public key format. It consists of an algorithm identifier and the public key as a bit string.
Choose this unless you have specific needs.

A PEM encoded key will look like:

-----BEGIN PUBLIC KEY-----
...
-----END PUBLIC KEY-----

154 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

PKCS1

Just the public key elements (without the algorithm identifier). This format is RSA only, but is used by
some older systems.

A PEM encoded key will look like:

-----BEGIN RSA PUBLIC KEY-----
...
-----END RSA PUBLIC KEY-----

OpenSSH

Added in version 1.4.

The public key format used by OpenSSH (e.g. as found in ~/.ssh/id_rsa.pub or ~/.ssh/
authorized_keys).

Raw

Added in version 2.5.

A raw format used by X448 key exchange. It is a binary format and is invalid for other key types.

CompressedPoint

Added in version 2.5.

A compressed elliptic curve public key as defined in ANSI X9.62 section 4.3.6 (as well as SEC 1 v2.0).

UncompressedPoint

Added in version 2.5.

An uncompressed elliptic curve public key as defined in ANSI X9.62 section 4.3.6 (as well as SEC 1 v2.0).

class cryptography.hazmat.primitives.serialization.ParameterFormat

Added in version 2.0.

An enumeration for parameters formats. Used with the parameter_bytesmethod available on DHParameters.

PKCS3

ASN1 DH parameters sequence as defined in PKCS3.

Serialization Encodings

class cryptography.hazmat.primitives.serialization.Encoding

An enumeration for encoding types. Used with the private_bytes method available on RSAPrivateKey
, EllipticCurvePrivateKey , DHPrivateKey, DSAPrivateKey, and X448PrivateKey as well as
public_bytes on RSAPublicKey, DHPublicKey, EllipticCurvePublicKey, and X448PublicKey.

PEM

Added in version 0.8.

For PEM format. This is a base64 format with delimiters.

DER

Added in version 0.9.

For DER format. This is a binary format.

2.3. Primitives 155

https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
https://www.teletrust.de/fileadmin/files/oid/oid_pkcs-3v1-4.pdf

Cryptography Documentation, Release 43.0.0.dev1

OpenSSH

Added in version 1.4.

The format used by OpenSSH public keys. This is a text format.

Raw

Added in version 2.5.

A raw format used by X448 key exchange. It is a binary format and is invalid for other key types.

X962

Added in version 2.5.

The format used by elliptic curve point encodings. This is a binary format.

SMIME

Added in version 3.2.

An output format used for PKCS7. This is a text format.

Serialization Encryption Types

class cryptography.hazmat.primitives.serialization.KeySerializationEncryption

Objects with this interface are usable as encryption types with methods like private_bytes available on
RSAPrivateKey , EllipticCurvePrivateKey , DHPrivateKey and DSAPrivateKey. All other classes in
this section represent the available choices for encryption and have this interface.

class cryptography.hazmat.primitives.serialization.BestAvailableEncryption(password)
Encrypt using the best available encryption for a given key. This is a curated encryption choice and the algorithm
may change over time. The encryption algorithm may vary based on which version of OpenSSL the library is
compiled against.

Parameters
password (bytes) – The password to use for encryption.

class cryptography.hazmat.primitives.serialization.NoEncryption

Do not encrypt.

class cryptography.hazmat.primitives.serialization.KeySerializationEncryptionBuilder

Added in version 38.0.0.

A builder that can be used to configure how data is encrypted. To create one, call PrivateFormat.
encryption_builder(). Different serialization types will support different options on this builder.

kdf_rounds(rounds)
Set the number of rounds the Key Derivation Function should use. The meaning of the number of rounds
varies on the KDF being used.

Parameters
rounds (int) – Number of rounds.

key_cert_algorithm(algorithm)

Set the encryption algorithm to use when encrypting the key and certificate in a PKCS12 structure.

Parameters
algorithm – A value from the PBES enumeration.

156 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

hmac_hash(algorithm)

Set the hash algorithm to use within the MAC for a PKCS12 structure.

Parameters
algorithm – An instance of a HashAlgorithm

build(password)
Turns the builder into an instance of KeySerializationEncryption with a given password.

Parameters
password (bytes) – The password.

Returns
A KeySerializationEncryption encryption object that can be passed to methods like
private_bytes or serialize_key_and_certificates().

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Asymmetric Utilities

cryptography.hazmat.primitives.asymmetric.utils.decode_dss_signature(signature)
Takes in signatures generated by the DSA/ECDSA signers and returns a tuple (r, s). These signatures are
ASN.1 encoded Dss-Sig-Value sequences (as defined in RFC 3279)

Parameters
signature (bytes) – The signature to decode.

Returns
The decoded tuple (r, s).

Raises
ValueError – Raised if the signature is malformed.

cryptography.hazmat.primitives.asymmetric.utils.encode_dss_signature(r, s)
Creates an ASN.1 encoded Dss-Sig-Value (as defined in RFC 3279) from raw r and s values.

Parameters

• r (int) – The raw signature value r.

• s (int) – The raw signature value s.

Return bytes
The encoded signature.

class cryptography.hazmat.primitives.asymmetric.utils.Prehashed(algorithm)

Added in version 1.6.

Prehashed can be passed as the algorithm in the RSA sign() and verify() as well as DSA sign() and
verify() methods.

For elliptic curves it can be passed as the algorithm in ECDSA and then used with sign() and verify() .

Parameters
algorithm – An instance of HashAlgorithm .

2.3. Primitives 157

https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc3279.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://datatracker.ietf.org/doc/html/rfc3279.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

>>> import hashlib
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import (
... padding, rsa, utils
...)
>>> private_key = rsa.generate_private_key(
... public_exponent=65537,
... key_size=2048,
...)
>>> prehashed_msg = hashlib.sha256(b"A message I want to sign").digest()
>>> signature = private_key.sign(
... prehashed_msg,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
...),
... utils.Prehashed(hashes.SHA256())
...)
>>> public_key = private_key.public_key()
>>> public_key.verify(
... signature,
... prehashed_msg,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
...),
... utils.Prehashed(hashes.SHA256())
...)

Common types

Asymmetric key types do not inherit from a common base class. The following union type aliases can be used instead
to reference a multitude of key types.

cryptography.hazmat.primitives.asymmetric.types.PublicKeyTypes

Added in version 40.0.0.

Type alias: A union of all public key types supported: DHPublicKey, RSAPublicKey, DSAPublicKey,
EllipticCurvePublicKey, Ed25519PublicKey, Ed448PublicKey, X25519PublicKey, X448PublicKey.

cryptography.hazmat.primitives.asymmetric.types.PrivateKeyTypes

Added in version 40.0.0.

Type alias: A union of all private key types supported: DHPrivateKey, RSAPrivateKey, DSAPrivateKey,
EllipticCurvePrivateKey, Ed25519PrivateKey, Ed448PrivateKey, X25519PrivateKey,
X448PrivateKey.

cryptography.hazmat.primitives.asymmetric.types.CertificatePublicKeyTypes

Added in version 40.0.0.

Type alias: A union of all public key types supported for X.509 certificates: RSAPublicKey, DSAPublicKey,
EllipticCurvePublicKey, Ed25519PublicKey, Ed448PublicKey, X25519PublicKey, X448PublicKey.

cryptography.hazmat.primitives.asymmetric.types.CertificateIssuerPublicKeyTypes

Added in version 40.0.0.

158 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Type alias: A union of all public key types that can sign other X.509 certificates as an issuer. x448/x25519 can
be a public key, but cannot be used in signing, so they are not allowed in these contexts.

Allowed: RSAPublicKey, DSAPublicKey, EllipticCurvePublicKey, Ed25519PublicKey,
Ed448PublicKey.

cryptography.hazmat.primitives.asymmetric.types.CertificateIssuerPrivateKeyTypes

Added in version 40.0.0.

Type alias: A union of all private key types that can sign other X.509 certificates as an issuer. x448/x25519 can
be a public key, but cannot be used in signing, so they are not allowed in these contexts.

Allowed: RSAPrivateKey, DSAPrivateKey, EllipticCurvePrivateKey, Ed25519PrivateKey,
Ed448PrivateKey.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.3 Constant time functions

This module contains functions for operating with secret data in a way that does not leak information about that data
through how long it takes to perform the operation. These functions should be used whenever operating on secret data
along with data that is user supplied.

An example would be comparing a HMAC signature received from a client to the one generated by the server code for
authentication purposes.

For more information about this sort of issue, see Coda Hale’s blog post about the timing attacks on KeyCzar and Java’s
MessageDigest.isEqual().

cryptography.hazmat.primitives.constant_time.bytes_eq(a, b)
Compares a and bwith one another. If a and b have different lengths, this returns False immediately. Otherwise
it compares them in a way that takes the same amount of time, regardless of how many characters are the same
between the two.

>>> from cryptography.hazmat.primitives import constant_time
>>> constant_time.bytes_eq(b"foo", b"foo")
True
>>> constant_time.bytes_eq(b"foo", b"bar")
False

Parameters

• a (bytes) – The left-hand side.

• b (bytes) – The right-hand side.

Returns bool
True if a has the same bytes as b, otherwise False.

Raises
TypeError – This exception is raised if a or b is not bytes.

2.3. Primitives 159

https://codahale.com/a-lesson-in-timing-attacks/
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.4 Key derivation functions

Key derivation functions derive bytes suitable for cryptographic operations from passwords or other data sources using
a pseudo-random function (PRF). Different KDFs are suitable for different tasks such as:

• Cryptographic key derivation

Deriving a key suitable for use as input to an encryption algorithm. Typically this means taking a
password and running it through an algorithm such as PBKDF2HMAC or HKDF. This process is typically
known as key stretching.

• Password storage

When storing passwords you want to use an algorithm that is computationally intensive. Legitimate
users will only need to compute it once (for example, taking the user’s password, running it through
the KDF, then comparing it to the stored value), while attackers will need to do it billions of times.
Ideal password storage KDFs will be demanding on both computational and memory resources.

Variable cost algorithms

PBKDF2

class cryptography.hazmat.primitives.kdf.pbkdf2.PBKDF2HMAC(algorithm, length, salt, iterations)
Added in version 0.2.

PBKDF2 (Password Based Key Derivation Function 2) is typically used for deriving a cryptographic key from
a password. It may also be used for key storage, but an alternate key storage KDF such as Scrypt is generally
considered a better solution.

This class conforms to the KeyDerivationFunction interface.

>>> import os
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
>>> # Salts should be randomly generated
>>> salt = os.urandom(16)
>>> # derive
>>> kdf = PBKDF2HMAC(
... algorithm=hashes.SHA256(),
... length=32,
... salt=salt,
... iterations=480000,
...)
>>> key = kdf.derive(b"my great password")
>>> # verify
>>> kdf = PBKDF2HMAC(
... algorithm=hashes.SHA256(),
... length=32,
... salt=salt,
... iterations=480000,

(continues on next page)

160 Chapter 2. Layout

https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/PBKDF2

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

...)
>>> kdf.verify(b"my great password", key)

Parameters

• algorithm – An instance of HashAlgorithm .

• length (int) – The desired length of the derived key in bytes. Maximum is (232 - 1) *
algorithm.digest_size.

• salt (bytes) – A salt. Secure values1 are 128-bits (16 bytes) or longer and randomly gen-
erated.

• iterations (int) – The number of iterations to perform of the hash function. This can
be used to control the length of time the operation takes. Higher numbers help mitigate
brute force attacks against derived keys. A more detailed description can be consulted for
additional information.

Raises
TypeError – This exception is raised if salt is not bytes.

derive(key_material)

Parameters
key_material (bytes-like) – The input key material. For PBKDF2 this should be a password.

Return bytes
the derived key.

Raises

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

• TypeError – This exception is raised if key_material is not bytes.

This generates and returns a new key from the supplied password.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match. This can be used for checking whether the
password a user provides matches the stored derived key.

1 See NIST SP 800-132.

2.3. Primitives 161

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://security.stackexchange.com/a/3993/43116
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://csrc.nist.gov/pubs/sp/800/132/final

Cryptography Documentation, Release 43.0.0.dev1

Scrypt

class cryptography.hazmat.primitives.kdf.scrypt.Scrypt(salt, length, n, r, p)
Added in version 1.6.

Scrypt is a KDF designed for password storage by Colin Percival to be resistant against hardware-assisted attack-
ers by having a tunable memory cost. It is described in RFC 7914.

This class conforms to the KeyDerivationFunction interface.

>>> import os
>>> from cryptography.hazmat.primitives.kdf.scrypt import Scrypt
>>> salt = os.urandom(16)
>>> # derive
>>> kdf = Scrypt(
... salt=salt,
... length=32,
... n=2**14,
... r=8,
... p=1,
...)
>>> key = kdf.derive(b"my great password")
>>> # verify
>>> kdf = Scrypt(
... salt=salt,
... length=32,
... n=2**14,
... r=8,
... p=1,
...)
>>> kdf.verify(b"my great password", key)

Parameters

• salt (bytes) – A salt.

• length (int) – The desired length of the derived key in bytes.

• n (int) – CPU/Memory cost parameter. It must be larger than 1 and be a power of 2.

• r (int) – Block size parameter.

• p (int) – Parallelization parameter.

The computational and memory cost of Scrypt can be adjusted by manipulating the 3 parameters: n, r, and p. In
general, the memory cost of Scrypt is affected by the values of both n and r, while n also determines the number
of iterations performed. p increases the computational cost without affecting memory usage. A more in-depth
explanation of the 3 parameters can be found here.

RFC 7914 recommends values of r=8 and p=1 while scaling n to a number appropriate for your system. The
scrypt paper suggests a minimum value of n=2**14 for interactive logins (t < 100ms), or n=2**20 for more
sensitive files (t < 5s).

Raises

• cryptography.exceptions.UnsupportedAlgorithm – If Scrypt is not supported by the
OpenSSL version cryptography is using.

• TypeError – This exception is raised if salt is not bytes.

162 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc7914.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://stackoverflow.com/a/30308723/1170681
https://datatracker.ietf.org/doc/html/rfc7914.html
https://datatracker.ietf.org/doc/html/rfc7914#section-2
https://www.tarsnap.com/scrypt/scrypt.pdf
https://www.tarsnap.com/scrypt/scrypt.pdf
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

• ValueError – This exception is raised if n is less than 2, if n is not a power of 2, if r is less
than 1 or if p is less than 1.

derive(key_material)

Parameters
key_material (bytes-like) – The input key material.

Return bytes
the derived key.

Raises

• TypeError – This exception is raised if key_material is not bytes.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This generates and returns a new key from the supplied password.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match. This can be used for checking whether the
password a user provides matches the stored derived key.

Fixed cost algorithms

ConcatKDF

class cryptography.hazmat.primitives.kdf.concatkdf.ConcatKDFHash(algorithm, length, otherinfo)
Added in version 1.0.

ConcatKDFHash (Concatenation Key Derivation Function) is defined by the NIST Special Publication NIST SP
800-56Ar3 document, to be used to derive keys for use after a Key Exchange negotiation operation.

Warning: ConcatKDFHash should not be used for password storage.

>>> import os
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.concatkdf import ConcatKDFHash
>>> otherinfo = b"concatkdf-example"

(continues on next page)

2.3. Primitives 163

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> ckdf = ConcatKDFHash(
... algorithm=hashes.SHA256(),
... length=32,
... otherinfo=otherinfo,
...)
>>> key = ckdf.derive(b"input key")
>>> ckdf = ConcatKDFHash(
... algorithm=hashes.SHA256(),
... length=32,
... otherinfo=otherinfo,
...)
>>> ckdf.verify(b"input key", key)

Parameters

• algorithm – An instance of HashAlgorithm .

• length (int) – The desired length of the derived key in bytes. Maximum is hashlen *
(2^32 -1).

• otherinfo (bytes) – Application specific context information. If None is explicitly passed
an empty byte string will be used.

Raises
TypeError – This exception is raised if otherinfo is not bytes.

derive(key_material)

Parameters
key_material (bytes-like) – The input key material.

Return bytes
The derived key.

Raises

• TypeError – This exception is raised if key_material is not bytes.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

Derives a new key from the input key material.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

164 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match.

class cryptography.hazmat.primitives.kdf.concatkdf.ConcatKDFHMAC(algorithm, length, salt,
otherinfo)

Added in version 1.0.

Similar to ConcatKFDHash but uses an HMAC function instead.

Warning: ConcatKDFHMAC should not be used for password storage.

>>> import os
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.concatkdf import ConcatKDFHMAC
>>> salt = os.urandom(16)
>>> otherinfo = b"concatkdf-example"
>>> ckdf = ConcatKDFHMAC(
... algorithm=hashes.SHA256(),
... length=32,
... salt=salt,
... otherinfo=otherinfo,
...)
>>> key = ckdf.derive(b"input key")
>>> ckdf = ConcatKDFHMAC(
... algorithm=hashes.SHA256(),
... length=32,
... salt=salt,
... otherinfo=otherinfo,
...)
>>> ckdf.verify(b"input key", key)

Parameters

• algorithm – An instance of HashAlgorithm .

• length (int) – The desired length of the derived key in bytes. Maximum is hashlen *
(2^32 -1).

• salt (bytes) – A salt. Randomizes the KDF’s output. Optional, but highly recommended.
Ideally as many bits of entropy as the security level of the hash: often that means crypto-
graphically random and as long as the hash output. Does not have to be secret, but may
cause stronger security guarantees if secret; If None is explicitly passed a default salt of
algorithm.block_size null bytes will be used.

• otherinfo (bytes) – Application specific context information. If None is explicitly passed
an empty byte string will be used.

Raises
TypeError – This exception is raised if salt or otherinfo is not bytes.

derive(key_material)

Parameters
key_material (bytes) – The input key material.

2.3. Primitives 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

Return bytes
The derived key.

Raises

• TypeError – This exception is raised if key_material is not bytes.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

Derives a new key from the input key material.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match.

HKDF

class cryptography.hazmat.primitives.kdf.hkdf.HKDF(algorithm, length, salt, info)
Added in version 0.2.

HKDF (HMAC-based Extract-and-Expand Key Derivation Function) is suitable for deriving keys of a fixed size
used for other cryptographic operations.

Warning: HKDF should not be used for password storage.

>>> import os
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDF
>>> salt = os.urandom(16)
>>> info = b"hkdf-example"
>>> hkdf = HKDF(
... algorithm=hashes.SHA256(),
... length=32,
... salt=salt,
... info=info,
...)
>>> key = hkdf.derive(b"input key")
>>> hkdf = HKDF(
... algorithm=hashes.SHA256(),

(continues on next page)

166 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://en.wikipedia.org/wiki/HKDF

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

... length=32,

... salt=salt,

... info=info,

...)
>>> hkdf.verify(b"input key", key)

Parameters

• algorithm – An instance of HashAlgorithm .

• length (int) – The desired length of the derived key in bytes. Maximum is 255 *
(algorithm.digest_size // 8).

• salt (bytes) – A salt. Randomizes the KDF’s output. Optional, but highly recommended.
Ideally as many bits of entropy as the security level of the hash: often that means crypto-
graphically random and as long as the hash output. Worse (shorter, less entropy) salt values
can still meaningfully contribute to security. May be reused. Does not have to be secret, but
may cause stronger security guarantees if secret; see RFC 5869 and the HKDF paper for
more details. If None is explicitly passed a default salt of algorithm.digest_size //
8 null bytes will be used. See understanding HKDF for additional detail about the salt and
info parameters.

• info (bytes) – Application specific context information. If None is explicitly passed an
empty byte string will be used.

Raises
TypeError – This exception is raised if salt or info is not bytes.

derive(key_material)

Parameters
key_material (bytes-like) – The input key material.

Return bytes
The derived key.

Raises

• TypeError – This exception is raised if key_material is not bytes.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

Derives a new key from the input key material by performing both the extract and expand operations.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

2.3. Primitives 167

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc5869.html
https://eprint.iacr.org/2010/264
https://soatok.blog/2021/11/17/understanding-hkdf/
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match.

class cryptography.hazmat.primitives.kdf.hkdf.HKDFExpand(algorithm, length, info)
Added in version 0.5.

HKDF consists of two stages, extract and expand. This class exposes an expand only version of HKDF that is
suitable when the key material is already cryptographically strong.

Warning: HKDFExpand should only be used if the key material is cryptographically strong. You should
use HKDF if you are unsure.

>>> import os
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.hkdf import HKDFExpand
>>> info = b"hkdf-example"
>>> key_material = os.urandom(16)
>>> hkdf = HKDFExpand(
... algorithm=hashes.SHA256(),
... length=32,
... info=info,
...)
>>> key = hkdf.derive(key_material)
>>> hkdf = HKDFExpand(
... algorithm=hashes.SHA256(),
... length=32,
... info=info,
...)
>>> hkdf.verify(key_material, key)

Parameters

• algorithm – An instance of HashAlgorithm .

• length (int) – The desired length of the derived key in bytes. Maximum is 255 *
(algorithm.digest_size // 8).

• info (bytes) – Application specific context information. If None is explicitly passed an
empty byte string will be used.

Raises
TypeError – This exception is raised if info is not bytes.

derive(key_material)

Parameters
key_material (bytes) – The input key material.

Return bytes
The derived key.

Raises

• TypeError – This exception is raised if key_material is not bytes.

168 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

Derives a new key from the input key material by performing both the extract and expand operations.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

• TypeError – This is raised if the provided key_material is a unicode object

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match.

KBKDF

class cryptography.hazmat.primitives.kdf.kbkdf.KBKDFHMAC(algorithm, mode, length, rlen, llen,
location, label, context, fixed)

Added in version 1.4.

KBKDF (Key Based Key Derivation Function) is defined by the NIST SP 800-108 document, to be used to derive
additional keys from a key that has been established through an automated key-establishment scheme.

Warning: KBKDFHMAC should not be used for password storage.

>>> import os
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.kbkdf import (
... CounterLocation, KBKDFHMAC, Mode
...)
>>> label = b"KBKDF HMAC Label"
>>> context = b"KBKDF HMAC Context"
>>> kdf = KBKDFHMAC(
... algorithm=hashes.SHA256(),
... mode=Mode.CounterMode,
... length=32,
... rlen=4,
... llen=4,
... location=CounterLocation.BeforeFixed,
... label=label,
... context=context,

(continues on next page)

2.3. Primitives 169

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://csrc.nist.gov/pubs/sp/800/108/r1/final

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

... fixed=None,

...)
>>> key = kdf.derive(b"input key")
>>> kdf = KBKDFHMAC(
... algorithm=hashes.SHA256(),
... mode=Mode.CounterMode,
... length=32,
... rlen=4,
... llen=4,
... location=CounterLocation.BeforeFixed,
... label=label,
... context=context,
... fixed=None,
...)
>>> kdf.verify(b"input key", key)

Parameters

• algorithm – An instance of HashAlgorithm .

• mode – The desired mode of the PRF. A value from the Mode enum.

• length (int) – The desired length of the derived key in bytes.

• rlen (int) – An integer that indicates the length of the binary representation of the counter
in bytes.

• llen (int) – An integer that indicates the binary representation of the length in bytes.

• location – The desired location of the counter. A value from the CounterLocation enum.

• label (bytes) – Application specific label information. If None is explicitly passed an
empty byte string will be used.

• context (bytes) – Application specific context information. If None is explicitly passed
an empty byte string will be used.

• fixed (bytes) – Instead of specifying label and context you may supply your own fixed
data. If fixed is specified, label and context is ignored.

• break_location (int) – A keyword-only argument. An integer that indicates the bytes
offset where counter bytes are to be located. Required when location is MiddleFixed .

Raises

• TypeError – This exception is raised if label or context is not bytes. Also raised if
rlen, llen, or break_location is not int.

• ValueError – This exception is raised if rlen or llen is greater than 4 or less than 1. This
exception is also raised if you specify a label or context and fixed. This exception is
also raised if you specify break_location and location is not MiddleFixed .

derive(key_material)

Parameters
key_material (bytes-like) – The input key material.

Return bytes
The derived key.

170 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

Raises

• TypeError – This exception is raised if key_material is not bytes.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

Derives a new key from the input key material.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match.

class cryptography.hazmat.primitives.kdf.kbkdf.KBKDFCMAC(algorithm, mode, length, rlen, llen,
location, label, context, fixed)

Added in version 35.0.0.

KBKDF (Key Based Key Derivation Function) is defined by the NIST SP 800-108 document, to be used to derive
additional keys from a key that has been established through an automated key-establishment scheme.

Warning: KBKDFCMAC should not be used for password storage.

>>> from cryptography.hazmat.primitives.ciphers import algorithms
>>> from cryptography.hazmat.primitives.kdf.kbkdf import (
... CounterLocation, KBKDFCMAC, Mode
...)
>>> label = b"KBKDF CMAC Label"
>>> context = b"KBKDF CMAC Context"
>>> kdf = KBKDFCMAC(
... algorithm=algorithms.AES,
... mode=Mode.CounterMode,
... length=32,
... rlen=4,
... llen=4,
... location=CounterLocation.BeforeFixed,
... label=label,
... context=context,
... fixed=None,
...)
>>> key = kdf.derive(b"32 bytes long input key material")

(continues on next page)

2.3. Primitives 171

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://csrc.nist.gov/pubs/sp/800/108/r1/final

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> kdf = KBKDFCMAC(
... algorithm=algorithms.AES,
... mode=Mode.CounterMode,
... length=32,
... rlen=4,
... llen=4,
... location=CounterLocation.BeforeFixed,
... label=label,
... context=context,
... fixed=None,
...)
>>> kdf.verify(b"32 bytes long input key material", key)

Parameters

• algorithm – A class implementing a block cipher algorithm being a subclass of
CipherAlgorithm and BlockCipherAlgorithm .

• mode – The desired mode of the PRF. A value from the Mode enum.

• length (int) – The desired length of the derived key in bytes.

• rlen (int) – An integer that indicates the length of the binary representation of the counter
in bytes.

• llen (int) – An integer that indicates the binary representation of the length in bytes.

• location – The desired location of the counter. A value from the CounterLocation enum.

• label (bytes) – Application specific label information. If None is explicitly passed an
empty byte string will be used.

• context (bytes) – Application specific context information. If None is explicitly passed
an empty byte string will be used.

• fixed (bytes) – Instead of specifying label and context you may supply your own fixed
data. If fixed is specified, label and context is ignored.

• break_location (int) – A keyword-only argument. An integer that indicates the bytes
offset where counter bytes are to be located. Required when location is MiddleFixed .

Raises

• cryptography.exceptions.UnsupportedAlgorithm – This is raised if algorithm is
not a subclass of CipherAlgorithm and BlockCipherAlgorithm .

• TypeError – This exception is raised if label or context is not bytes, rlen, llen, or
break_location is not int, mode is not Mode or location is not CounterLocation.

• ValueError – This exception is raised if rlen or llen is greater than 4 or less than 1. This
exception is also raised if you specify a label or context and fixed. This exception is
also raised if you specify break_location and location is not MiddleFixed .

derive(key_material)

Parameters
key_material (bytes-like) – The input key material.

Return bytes
The derived key.

172 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

Raises

• TypeError – This exception is raised if key_material is not bytes.

• ValueError – This exception is raised if key_material is not a valid key for algorithm
passed to KBKDFCMAC constructor.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

Derives a new key from the input key material.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises
cryptography.exceptions.InvalidKey – This is raised when the derived key does not
match the expected key.

Raises
Exceptions raised by derive().

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match.

class cryptography.hazmat.primitives.kdf.kbkdf.Mode

An enumeration for the key based key derivative modes.

CounterMode

The output of the PRF is computed with a counter as the iteration variable.

class cryptography.hazmat.primitives.kdf.kbkdf.CounterLocation

An enumeration for the key based key derivative counter location.

BeforeFixed

The counter iteration variable will be concatenated before the fixed input data.

AfterFixed

The counter iteration variable will be concatenated after the fixed input data.

MiddleFixed

Added in version 38.0.0.

The counter iteration variable will be concatenated in the middle of the fixed input data.

2.3. Primitives 173

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

X963KDF

class cryptography.hazmat.primitives.kdf.x963kdf.X963KDF(algorithm, length, otherinfo)
Added in version 1.1.

X963KDF (ANSI X9.63 Key Derivation Function) is defined by ANSI in the ANSI X9.63:2001 document, to
be used to derive keys for use after a Key Exchange negotiation operation.

SECG in SEC 1 v2.0 recommends that ConcatKDFHash be used for new projects. This KDF should only be
used for backwards compatibility with pre-existing protocols.

Warning: X963KDF should not be used for password storage.

>>> import os
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.kdf.x963kdf import X963KDF
>>> sharedinfo = b"ANSI X9.63 Example"
>>> xkdf = X963KDF(
... algorithm=hashes.SHA256(),
... length=32,
... sharedinfo=sharedinfo,
...)
>>> key = xkdf.derive(b"input key")
>>> xkdf = X963KDF(
... algorithm=hashes.SHA256(),
... length=32,
... sharedinfo=sharedinfo,
...)
>>> xkdf.verify(b"input key", key)

Parameters

• algorithm – An instance of HashAlgorithm .

• length (int) – The desired length of the derived key in bytes. Maximum is hashlen *
(2^32 -1).

• sharedinfo (bytes) – Application specific context information. If None is explicitly
passed an empty byte string will be used.

Raises
TypeError – This exception is raised if sharedinfo is not bytes.

derive(key_material)

Parameters
key_material (bytes-like) – The input key material.

Return bytes
The derived key.

Raises

• TypeError – This exception is raised if key_material is not bytes.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

174 Chapter 2. Layout

https://webstore.ansi.org
https://www.secg.org/sec1-v2.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

Derives a new key from the input key material.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match.

Interface

class cryptography.hazmat.primitives.kdf.KeyDerivationFunction

Added in version 0.2.

derive(key_material)

Parameters
key_material (bytes) – The input key material. Depending on what key derivation func-
tion you are using this could be either random bytes, or a user supplied password.

Returns
The new key.

Raises
cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

This generates and returns a new key from the supplied key material.

verify(key_material, expected_key)

Parameters

• key_material (bytes) – The input key material. This is the same as key_material in
derive().

• expected_key (bytes) – The expected result of deriving a new key, this is the same as
the return value of derive().

Raises

• cryptography.exceptions.InvalidKey – This is raised when the derived key does
not match the expected key.

• cryptography.exceptions.AlreadyFinalized – This is raised when derive() or
verify() is called more than once.

2.3. Primitives 175

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

This checks whether deriving a new key from the supplied key_material generates the same key as the
expected_key, and raises an exception if they do not match. This can be used for something like checking
whether a user’s password attempt matches the stored derived key.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.5 Key wrapping

Key wrapping is a cryptographic construct that uses symmetric encryption to encapsulate key material. Key wrapping
algorithms are occasionally utilized to protect keys at rest or transmit them over insecure networks. Many of the
protections offered by key wrapping are also offered by using authenticated symmetric encryption.

cryptography.hazmat.primitives.keywrap.aes_key_wrap(wrapping_key, key_to_wrap)
Added in version 1.1.

This function performs AES key wrap (without padding) as specified in RFC 3394.

Parameters

• wrapping_key (bytes) – The wrapping key.

• key_to_wrap (bytes) – The key to wrap.

Return bytes
The wrapped key as bytes.

cryptography.hazmat.primitives.keywrap.aes_key_unwrap(wrapping_key, wrapped_key)
Added in version 1.1.

This function performs AES key unwrap (without padding) as specified in RFC 3394.

Parameters

• wrapping_key (bytes) – The wrapping key.

• wrapped_key (bytes) – The wrapped key.

Return bytes
The unwrapped key as bytes.

Raises
cryptography.hazmat.primitives.keywrap.InvalidUnwrap – This is raised if the key is
not successfully unwrapped.

cryptography.hazmat.primitives.keywrap.aes_key_wrap_with_padding(wrapping_key, key_to_wrap)
Added in version 2.2.

This function performs AES key wrap with padding as specified in RFC 5649.

Parameters

• wrapping_key (bytes) – The wrapping key.

• key_to_wrap (bytes) – The key to wrap.

Return bytes
The wrapped key as bytes.

176 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc3394.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc3394.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc5649.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

cryptography.hazmat.primitives.keywrap.aes_key_unwrap_with_padding(wrapping_key,
wrapped_key)

Added in version 2.2.

This function performs AES key unwrap with padding as specified in RFC 5649.

Parameters

• wrapping_key (bytes) – The wrapping key.

• wrapped_key (bytes) – The wrapped key.

Return bytes
The unwrapped key as bytes.

Raises
cryptography.hazmat.primitives.keywrap.InvalidUnwrap – This is raised if the key is
not successfully unwrapped.

Exceptions

class cryptography.hazmat.primitives.keywrap.InvalidUnwrap

This is raised when a wrapped key fails to unwrap. It can be caused by a corrupted or invalid wrapped key or an
invalid wrapping key.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.6 Message authentication codes

While cryptography supports multiple MAC algorithms, we strongly recommend that HMAC should be used unless
you have a very specific need.

For more information on why HMAC is preferred, see Use cases for CMAC vs. HMAC?

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Cipher-based message authentication code (CMAC)

Cipher-based message authentication codes (or CMACs) are a tool for calculating message authentication codes using
a block cipher coupled with a secret key. You can use an CMAC to verify both the integrity and authenticity of a
message.

A subset of CMAC with the AES-128 algorithm is described in RFC 4493.

class cryptography.hazmat.primitives.cmac.CMAC(algorithm)

Added in version 0.4.

CMAC objects take a BlockCipherAlgorithm instance.

2.3. Primitives 177

https://datatracker.ietf.org/doc/html/rfc5649.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://crypto.stackexchange.com/questions/15721/use-cases-for-cmac-vs-hmac
https://en.wikipedia.org/wiki/CMAC
https://datatracker.ietf.org/doc/html/rfc4493.html

Cryptography Documentation, Release 43.0.0.dev1

>>> from cryptography.hazmat.primitives import cmac
>>> from cryptography.hazmat.primitives.ciphers import algorithms
>>> c = cmac.CMAC(algorithms.AES(key))
>>> c.update(b"message to authenticate")
>>> c.finalize()
b'CT\x1d\xc8\x0e\x15\xbe4e\xdb\xb6\x84\xca\xd9Xk'

If algorithm isn’t a BlockCipherAlgorithm instance then TypeError will be raised.

To check that a given signature is correct use the verify()method. You will receive an exception if the signature
is wrong:

>>> c = cmac.CMAC(algorithms.AES(key))
>>> c.update(b"message to authenticate")
>>> c.verify(b"an incorrect signature")
Traceback (most recent call last):
...
cryptography.exceptions.InvalidSignature: Signature did not match digest.

Parameters
algorithm – An instance of BlockCipherAlgorithm .

Raises

• TypeError – This is raised if the provided algorithm is not an instance of
BlockCipherAlgorithm

• cryptography.exceptions.UnsupportedAlgorithm – This is raised if the provided
algorithm is unsupported.

update(data)

Parameters
data (bytes) – The bytes to hash and authenticate.

Raises

• cryptography.exceptions.AlreadyFinalized – See finalize()

• TypeError – This exception is raised if data is not bytes.

copy()

Copy this CMAC instance, usually so that we may call finalize() to get an intermediate value while we
continue to call update() on the original instance.

Returns
A new instance of CMAC that can be updated and finalized independently of the original in-
stance.

Raises
cryptography.exceptions.AlreadyFinalized – See finalize()

verify(signature)
Finalize the current context and securely compare the MAC to signature.

Parameters
signature (bytes) – The bytes to compare the current CMAC against.

Raises

178 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

• cryptography.exceptions.AlreadyFinalized – See finalize()

• cryptography.exceptions.InvalidSignature – If signature does not match digest

• TypeError – This exception is raised if signature is not bytes.

finalize()

Finalize the current context and return the message authentication code as bytes.

After finalize has been called this object can no longer be used and update(), copy(), verify() and
finalize() will raise an AlreadyFinalized exception.

Return bytes
The message authentication code as bytes.

Raises
cryptography.exceptions.AlreadyFinalized –

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Hash-based message authentication codes (HMAC)

Hash-based message authentication codes (or HMACs) are a tool for calculating message authentication codes using
a cryptographic hash function coupled with a secret key. You can use an HMAC to verify both the integrity and
authenticity of a message.

class cryptography.hazmat.primitives.hmac.HMAC(key, algorithm)

HMAC objects take a key and a HashAlgorithm instance. The key should be randomly generated bytes and
is recommended to be equal in length to the digest_size of the hash function chosen. You must keep the key
secret.

This is an implementation of RFC 2104.

>>> from cryptography.hazmat.primitives import hashes, hmac
>>> key = b'test key. Beware! A real key should use os.urandom or TRNG to generate'
>>> h = hmac.HMAC(key, hashes.SHA256())
>>> h.update(b"message to hash")
>>> signature = h.finalize()
>>> signature
b'k\xd9\xb29\xefS\xf8\xcf\xec\xed\xbf\x95\xe6\x97X\x18\x9e%\x11DU1\x9fq}\x9a\x9c\
→˓xe0)y`='

If algorithm isn’t a HashAlgorithm instance then TypeError will be raised.

To check that a given signature is correct use the verify()method. You will receive an exception if the signature
is wrong:

>>> h = hmac.HMAC(key, hashes.SHA256())
>>> h.update(b"message to hash")
>>> h_copy = h.copy() # get a copy of `h' to be reused
>>> h.verify(signature)
>>>

(continues on next page)

2.3. Primitives 179

https://docs.python.org/3/library/exceptions.html#TypeError
https://datatracker.ietf.org/doc/html/rfc2104.html

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> h_copy.verify(b"an incorrect signature")
Traceback (most recent call last):
...
cryptography.exceptions.InvalidSignature: Signature did not match digest.

Parameters

• key (bytes-like) – The secret key.

• algorithm – An HashAlgorithm instance such as those described in Cryptographic
Hashes.

Raises
cryptography.exceptions.UnsupportedAlgorithm – This is raised if the provided
algorithm isn’t supported.

update(msg)

Parameters
msg (bytes-like) – The bytes to hash and authenticate.

Raises

• cryptography.exceptions.AlreadyFinalized – See finalize()

• TypeError – This exception is raised if msg is not bytes.

copy()

Copy this HMAC instance, usually so that we may call finalize() to get an intermediate digest value while
we continue to call update() on the original instance.

Returns
A new instance of HMAC that can be updated and finalized independently of the original in-
stance.

Raises
cryptography.exceptions.AlreadyFinalized – See finalize()

verify(signature)
Finalize the current context and securely compare digest to signature.

Parameters
signature (bytes) – The bytes to compare the current digest against.

Raises

• cryptography.exceptions.AlreadyFinalized – See finalize()

• cryptography.exceptions.InvalidSignature – If signature does not match digest

• TypeError – This exception is raised if signature is not bytes.

finalize()

Finalize the current context and return the message digest as bytes.

After finalize has been called this object can no longer be used and update(), copy(), verify() and
finalize() will raise an AlreadyFinalized exception.

Return bytes
The message digest as bytes.

180 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

Raises
cryptography.exceptions.AlreadyFinalized –

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

Poly1305

Poly1305 is an authenticator that takes a 32-byte key and a message and produces a 16-byte tag. This tag is used to
authenticate the message. Each key must only be used once. Using the same key to generate tags for multiple messages
allows an attacker to forge tags. Poly1305 is described in RFC 7539.

class cryptography.hazmat.primitives.poly1305.Poly1305(key)
Added in version 2.7.

Warning: Using the same key to generate tags for multiple messages allows an attacker to forge tags. Always
generate a new key per message you want to authenticate. If you are using this as a MAC for symmetric
encryption please use ChaCha20Poly1305 instead.

>>> from cryptography.hazmat.primitives import poly1305
>>> p = poly1305.Poly1305(key)
>>> p.update(b"message to authenticate")
>>> p.finalize()
b'T\xae\xff3\xbdW\xef\xd5r\x01\xe2n=\xb7\xd2h'

To check that a given tag is correct use the verify()method. You will receive an exception if the tag is wrong:

>>> p = poly1305.Poly1305(key)
>>> p.update(b"message to authenticate")
>>> p.verify(b"an incorrect tag")
Traceback (most recent call last):
...
cryptography.exceptions.InvalidSignature: Value did not match computed tag.

Parameters
key (bytes-like) – The secret key.

Raises
cryptography.exceptions.UnsupportedAlgorithm – This is raised if the version of
OpenSSL cryptography is compiled against does not support this algorithm.

update(data)

Parameters
data (bytes-like) – The bytes to hash and authenticate.

Raises

• cryptography.exceptions.AlreadyFinalized – See finalize()

• TypeError – This exception is raised if data is not bytes.

2.3. Primitives 181

https://datatracker.ietf.org/doc/html/rfc7539.html
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

verify(tag)
Finalize the current context and securely compare the MAC to tag.

Parameters
tag (bytes) – The bytes to compare against.

Raises

• cryptography.exceptions.AlreadyFinalized – See finalize()

• cryptography.exceptions.InvalidSignature – If tag does not match.

• TypeError – This exception is raised if tag is not bytes.

finalize()

Finalize the current context and return the message authentication code as bytes.

After finalize has been called this object can no longer be used and update(), verify(), and
finalize() will raise an AlreadyFinalized exception.

Return bytes
The message authentication code as bytes.

Raises
cryptography.exceptions.AlreadyFinalized –

classmethod generate_tag(key, data)
A single step alternative to do sign operations. Returns the message authentication code as bytes for the
given key and data.

Parameters

• key (bytes-like) – Secret key as bytes.

• data (bytes-like) – The bytes to hash and authenticate.

Return bytes
The message authentication code as bytes.

Raises

• cryptography.exceptions.UnsupportedAlgorithm – This is raised if the version of
OpenSSL cryptography is compiled against does not support this algorithm.

• TypeError – This exception is raised if key or data are not bytes.

>>> poly1305.Poly1305.generate_tag(key, b"message to authenticate")
b'T\xae\xff3\xbdW\xef\xd5r\x01\xe2n=\xb7\xd2h'

classmethod verify_tag(key, data, tag)
A single step alternative to do verify operations. Securely compares the MAC to tag, using the given key
and data.

Parameters

• key (bytes-like) – Secret key as bytes.

• data (bytes-like) – The bytes to hash and authenticate.

• tag (bytes) – The bytes to compare against.

Raises

182 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

• cryptography.exceptions.UnsupportedAlgorithm – This is raised if the version of
OpenSSL cryptography is compiled against does not support this algorithm.

• TypeError – This exception is raised if key, data or tag are not bytes.

• cryptography.exceptions.InvalidSignature – If tag does not match.

>>> poly1305.Poly1305.verify_tag(key, b"message to authenticate", b"an␣
→˓incorrect tag")
Traceback (most recent call last):
...
cryptography.exceptions.InvalidSignature: Value did not match computed tag.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.7 Message digests (Hashing)

class cryptography.hazmat.primitives.hashes.Hash(algorithm)

A cryptographic hash function takes an arbitrary block of data and calculates a fixed-size bit string (a digest),
such that different data results (with a high probability) in different digests.

This is an implementation of HashContext meant to be used with HashAlgorithm implementations to provide
an incremental interface to calculating various message digests.

>>> from cryptography.hazmat.primitives import hashes
>>> digest = hashes.Hash(hashes.SHA256())
>>> digest.update(b"abc")
>>> digest.update(b"123")
>>> digest.finalize()
b'l\xa1=R\xcap\xc8\x83\xe0\xf0\xbb\x10\x1eBZ\x89\xe8bM\xe5\x1d\xb2\xd29%\x93\xafj\
→˓x84\x11\x80\x90'

Keep in mind that attacks against cryptographic hashes only get stronger with time, and that often algorithms that
were once thought to be strong, become broken. Because of this it’s important to include a plan for upgrading
the hash algorithm you use over time. For more information, see Lifetimes of cryptographic hash functions.

Parameters
algorithm – A HashAlgorithm instance such as those described in below.

Raises
cryptography.exceptions.UnsupportedAlgorithm – This is raised if the provided
algorithm is unsupported.

update(data)

Parameters
data (bytes) – The bytes to be hashed.

Raises

• cryptography.exceptions.AlreadyFinalized – See finalize().

• TypeError – This exception is raised if data is not bytes.

2.3. Primitives 183

https://docs.python.org/3/library/exceptions.html#TypeError
https://valerieaurora.org/hash.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

copy()

Copy this Hash instance, usually so that you may call finalize() to get an intermediate digest value
while we continue to call update() on the original instance.

Returns
A new instance of Hash that can be updated and finalized independently of the original in-
stance.

Raises
cryptography.exceptions.AlreadyFinalized – See finalize().

finalize()

Finalize the current context and return the message digest as bytes.

After finalize has been called this object can no longer be used and update(), copy(), and finalize()
will raise an AlreadyFinalized exception.

Return bytes
The message digest as bytes.

SHA-2 family

class cryptography.hazmat.primitives.hashes.SHA224

SHA-224 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It produces a
224-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA256

SHA-256 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It produces a
256-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA384

SHA-384 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It produces a
384-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA512

SHA-512 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It produces a
512-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA512_224

Added in version 2.5.

SHA-512/224 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It produces
a 224-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA512_256

Added in version 2.5.

SHA-512/256 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It produces
a 256-bit message digest.

184 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

BLAKE2

BLAKE2 is a cryptographic hash function specified in RFC 7693. BLAKE2’s design makes it immune to length-
extension attacks, an advantage over the SHA-family of hashes.

Note: While the RFC specifies keying, personalization, and salting features, these are not supported at this time due
to limitations in OpenSSL.

class cryptography.hazmat.primitives.hashes.BLAKE2b(digest_size)
BLAKE2b is optimized for 64-bit platforms and produces an 1 to 64-byte message digest.

Parameters
digest_size (int) – The desired size of the hash output in bytes. Only 64 is supported at this
time.

Raises
ValueError – If the digest_size is invalid.

class cryptography.hazmat.primitives.hashes.BLAKE2s(digest_size)
BLAKE2s is optimized for 8 to 32-bit platforms and produces a 1 to 32-byte message digest.

Parameters
digest_size (int) – The desired size of the hash output in bytes. Only 32 is supported at this
time.

Raises
ValueError – If the digest_size is invalid.

SHA-3 family

SHA-3 is the most recent NIST secure hash algorithm standard. Despite the larger number SHA-3 is not considered
to be better than SHA-2. Instead, it uses a significantly different internal structure so that if an attack appears against
SHA-2 it is unlikely to apply to SHA-3. SHA-3 is significantly slower than SHA-2 so at this time most users should
choose SHA-2.

class cryptography.hazmat.primitives.hashes.SHA3_224

Added in version 2.5.

SHA3/224 is a cryptographic hash function from the SHA-3 family and is standardized by NIST. It produces a
224-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA3_256

Added in version 2.5.

SHA3/256 is a cryptographic hash function from the SHA-3 family and is standardized by NIST. It produces a
256-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA3_384

Added in version 2.5.

SHA3/384 is a cryptographic hash function from the SHA-3 family and is standardized by NIST. It produces a
384-bit message digest.

class cryptography.hazmat.primitives.hashes.SHA3_512

Added in version 2.5.

SHA3/512 is a cryptographic hash function from the SHA-3 family and is standardized by NIST. It produces a
512-bit message digest.

2.3. Primitives 185

https://www.blake2.net/
https://datatracker.ietf.org/doc/html/rfc7693.html
https://en.wikipedia.org/wiki/Length_extension_attack
https://en.wikipedia.org/wiki/Length_extension_attack
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.hashes.SHAKE128(digest_size)
Added in version 2.5.

SHAKE128 is an extendable output function (XOF) based on the same core permutations as SHA3. It allows the
caller to obtain an arbitrarily long digest length. Longer lengths, however, do not increase security or collision
resistance and lengths shorter than 128 bit (16 bytes) will decrease it.

Parameters
digest_size (int) – The length of output desired. Must be greater than zero.

Raises
ValueError – If the digest_size is invalid.

class cryptography.hazmat.primitives.hashes.SHAKE256(digest_size)
Added in version 2.5.

SHAKE256 is an extendable output function (XOF) based on the same core permutations as SHA3. It allows the
caller to obtain an arbitrarily long digest length. Longer lengths, however, do not increase security or collision
resistance and lengths shorter than 256 bit (32 bytes) will decrease it.

Parameters
digest_size (int) – The length of output desired. Must be greater than zero.

Raises
ValueError – If the digest_size is invalid.

SHA-1

Warning: SHA-1 is a deprecated hash algorithm that has practical known collision attacks. You are strongly
discouraged from using it. Existing applications should strongly consider moving away.

class cryptography.hazmat.primitives.hashes.SHA1

SHA-1 is a cryptographic hash function standardized by NIST. It produces an 160-bit message digest. Crypt-
analysis of SHA-1 has demonstrated that it is vulnerable to practical collision attacks, and collisions have been
demonstrated.

MD5

Warning: MD5 is a deprecated hash algorithm that has practical known collision attacks. You are strongly
discouraged from using it. Existing applications should strongly consider moving away.

class cryptography.hazmat.primitives.hashes.MD5

MD5 is a deprecated cryptographic hash function. It produces a 128-bit message digest and has practical known
collision attacks.

186 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

SM3

class cryptography.hazmat.primitives.hashes.SM3

Added in version 35.0.0.

SM3 is a cryptographic hash function standardized by the Chinese National Cryptography Administration in
GM/T 0004-2012. It produces 256-bit message digests. (An English description is available at draft-sca-cfrg-
sm3.) This hash should be used for compatibility purposes where required and is not otherwise recommended
for use.

Interfaces

class cryptography.hazmat.primitives.hashes.HashAlgorithm

name

Type
str

The standard name for the hash algorithm, for example: "sha256" or "blake2b".

digest_size

Type
int

The size of the resulting digest in bytes.

class cryptography.hazmat.primitives.hashes.HashContext

algorithm

A HashAlgorithm that will be used by this context.

update(data)

Parameters
data (bytes) – The data you want to hash.

finalize()

Returns
The final digest as bytes.

copy()

Returns
A HashContext that is a copy of the current context.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

You may instead be interested in Fernet (symmetric encryption).

2.3. Primitives 187

https://www.oscca.gov.cn/sca/xxgk/2010-12/17/1002389/files/302a3ada057c4a73830536d03e683110.pdf
https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3
https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

Cryptography Documentation, Release 43.0.0.dev1

2.3.8 Symmetric encryption

Symmetric encryption is a way to encrypt or hide the contents of material where the sender and receiver both use the
same secret key. Note that symmetric encryption is not sufficient for most applications because it only provides secrecy
but not authenticity. That means an attacker can’t see the message but an attacker can create bogus messages and force
the application to decrypt them. In many contexts, a lack of authentication on encrypted messages can result in a loss
of secrecy as well.

For this reason in nearly all contexts it is necessary to combine encryption with a message authentication code, such
as HMAC, in an “encrypt-then-MAC” formulation as described by Colin Percival. cryptography includes a recipe
named Fernet (symmetric encryption) that does this for you. To minimize the risk of security issues you should
evaluate Fernet to see if it fits your needs before implementing anything using this module. If Fernet (symmet-
ric encryption) is not appropriate for your use-case then you may still benefit from Authenticated encryption which
combines encryption and authentication securely.

class cryptography.hazmat.primitives.ciphers.Cipher(algorithm, mode)
Cipher objects combine an algorithm such as AES with a mode like CBC or CTR . A simple example of encrypting
and then decrypting content with AES is:

>>> import os
>>> from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
>>> key = os.urandom(32)
>>> iv = os.urandom(16)
>>> cipher = Cipher(algorithms.AES(key), modes.CBC(iv))
>>> encryptor = cipher.encryptor()
>>> ct = encryptor.update(b"a secret message") + encryptor.finalize()
>>> decryptor = cipher.decryptor()
>>> decryptor.update(ct) + decryptor.finalize()
b'a secret message'

Parameters

• algorithm – A CipherAlgorithm instance such as those described below.

• mode – A Mode instance such as those described below.

Raises
cryptography.exceptions.UnsupportedAlgorithm – This is raised if the provided
algorithm is unsupported.

encryptor()

Returns
An encrypting CipherContext instance.

If the requested combination of algorithm and mode is unsupported an UnsupportedAlgorithm excep-
tion will be raised.

decryptor()

Returns
A decrypting CipherContext instance.

If the requested combination of algorithm and mode is unsupported an UnsupportedAlgorithm excep-
tion will be raised.

188 Chapter 2. Layout

https://ssd.eff.org/en/module/what-should-i-know-about-encryption
https://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html

Cryptography Documentation, Release 43.0.0.dev1

Algorithms

class cryptography.hazmat.primitives.ciphers.algorithms.AES(key)
AES (Advanced Encryption Standard) is a block cipher standardized by NIST. AES is both fast, and cryptograph-
ically strong. It is a good default choice for encryption.

Parameters
key (bytes-like) – The secret key. This must be kept secret. Either 128, 192, or 256 bits long.

class cryptography.hazmat.primitives.ciphers.algorithms.AES128(key)
Added in version 38.0.0.

An AES class that only accepts 128 bit keys. This is identical to the standard AES class except that it will only
accept a single key length.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 128 bits long.

class cryptography.hazmat.primitives.ciphers.algorithms.AES256(key)
Added in version 38.0.0.

An AES class that only accepts 256 bit keys. This is identical to the standard AES class except that it will only
accept a single key length.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 256 bits long.

class cryptography.hazmat.primitives.ciphers.algorithms.Camellia(key)
Camellia is a block cipher approved for use by CRYPTREC and ISO/IEC. It is considered to have comparable
security and performance to AES but is not as widely studied or deployed.

Parameters
key (bytes-like) – The secret key. This must be kept secret. Either 128, 192, or 256 bits long.

class cryptography.hazmat.primitives.ciphers.algorithms.ChaCha20(key, nonce)
Added in version 2.1.

Note: In most cases users should use ChaCha20Poly1305 instead of this class. ChaCha20 alone does not
provide integrity so it must be combined with a MAC to be secure. ChaCha20Poly1305 does this for you.

ChaCha20 is a stream cipher used in several IETF protocols. While it is standardized in RFC 7539, this imple-
mentation is not RFC-compliant. This implementation uses a 64 bits counter and a 64 bits nonce as defined
in the original version of the algorithm, rather than the 32/96 counter/nonce split defined in RFC 7539.

Parameters

• key (bytes-like) – The secret key. This must be kept secret. 256 bits (32 bytes) in length.

• nonce (bytes-like) – Should be unique, a nonce. It is critical to never reuse a nonce with a
given key. Any reuse of a nonce with the same key compromises the security of every mes-
sage encrypted with that key. The nonce does not need to be kept secret and may be included
with the ciphertext. This must be 128 bits in length. The 128-bit value is a concatenation of
the 8-byte little-endian counter and the 8-byte nonce.

Note: In the original version of the algorithm the nonce is defined as a 64-bit value that is later concatenated
with a block counter (encoded as a 64-bit little-endian). If you have a separate nonce and block counter you will

2.3. Primitives 189

https://www.cryptrec.go.jp/en/
https://datatracker.ietf.org/doc/html/rfc7539.html
https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant
https://datatracker.ietf.org/doc/html/rfc7539.html
https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant

Cryptography Documentation, Release 43.0.0.dev1

need to concatenate it yourself before passing it. For example, if you have an initial block counter of 2 and a
64-bit nonce the concatenated nonce would be struct.pack("<Q", 2) + nonce.

>>> import struct, os
>>> from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
>>> nonce = os.urandom(8)
>>> counter = 0
>>> full_nonce = struct.pack("<Q", counter) + nonce
>>> algorithm = algorithms.ChaCha20(key, full_nonce)
>>> cipher = Cipher(algorithm, mode=None)
>>> encryptor = cipher.encryptor()
>>> ct = encryptor.update(b"a secret message")
>>> decryptor = cipher.decryptor()
>>> decryptor.update(ct)
b'a secret message'

class cryptography.hazmat.primitives.ciphers.algorithms.TripleDES(key)

Warning: This algorithm has been deprecated and moved to the Decrepit cryptography module. If you
need to continue using it then update your code to use the new module path. It will be removed from this
namespace in 48.0.0.

Triple DES (Data Encryption Standard), sometimes referred to as 3DES, is a block cipher standardized by NIST.
Triple DES has known crypto-analytic flaws, however none of them currently enable a practical attack. Nonethe-
less, Triple DES is not recommended for new applications because it is incredibly slow; old applications should
consider moving away from it.

Parameters
key (bytes-like) – The secret key. This must be kept secret. Either 64, 128, or 192 bits long.
DES only uses 56, 112, or 168 bits of the key as there is a parity byte in each component of the
key. Some writing refers to there being up to three separate keys that are each 56 bits long, they
can simply be concatenated to produce the full key.

class cryptography.hazmat.primitives.ciphers.algorithms.CAST5(key)
Added in version 0.2.

Warning: This algorithm has been deprecated and moved to the Decrepit cryptography module. If you
need to continue using it then update your code to use the new module path. It will be removed from this
namespace in 45.0.0.

CAST5 (also known as CAST-128) is a block cipher approved for use in the Canadian government by the Com-
munications Security Establishment. It is a variable key length cipher and supports keys from 40-128 bits in
length.

Parameters
key (bytes-like) – The secret key, This must be kept secret. 40 to 128 bits in length in increments
of 8 bits.

class cryptography.hazmat.primitives.ciphers.algorithms.SEED(key)
Added in version 0.4.

190 Chapter 2. Layout

https://www.cse-cst.gc.ca
https://www.cse-cst.gc.ca

Cryptography Documentation, Release 43.0.0.dev1

Warning: This algorithm has been deprecated and moved to the Decrepit cryptography module. If you
need to continue using it then update your code to use the new module path. It will be removed from this
namespace in 45.0.0.

SEED is a block cipher developed by the Korea Information Security Agency (KISA). It is defined in RFC 4269
and is used broadly throughout South Korean industry, but rarely found elsewhere.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 128 bits in length.

class cryptography.hazmat.primitives.ciphers.algorithms.SM4(key)
Added in version 35.0.0.

SM4 is a block cipher developed by the Chinese Government and standardized in the GB/T 32907-2016. It is
used in the Chinese WAPI (Wired Authentication and Privacy Infrastructure) standard. (An English description
is available at draft-ribose-cfrg-sm4-10.) This block cipher should be used for compatibility purposes where
required and is not otherwise recommended for use.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 128 bits in length.

Weak ciphers

Warning: These ciphers are considered weak for a variety of reasons. New applications should avoid their use
and existing applications should strongly consider migrating away.

class cryptography.hazmat.primitives.ciphers.algorithms.Blowfish(key)

Warning: This algorithm has been deprecated and moved to the Decrepit cryptography module. If you
need to continue using it then update your code to use the new module path. It will be removed from this
namespace in 45.0.0.

Blowfish is a block cipher developed by Bruce Schneier. It is known to be susceptible to attacks when using
weak keys. The author has recommended that users of Blowfish move to newer algorithms such as AES.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 32 to 448 bits in length in increments
of 8 bits.

class cryptography.hazmat.primitives.ciphers.algorithms.ARC4(key)

Warning: This algorithm has been deprecated and moved to the Decrepit cryptography module. If you
need to continue using it then update your code to use the new module path. It will be removed from this
namespace in 48.0.0.

ARC4 (Alleged RC4) is a stream cipher with serious weaknesses in its initial stream output. Its use is strongly
discouraged. ARC4 does not use mode constructions.

2.3. Primitives 191

https://datatracker.ietf.org/doc/html/rfc4269.html
https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10

Cryptography Documentation, Release 43.0.0.dev1

Parameters
key (bytes-like) – The secret key. This must be kept secret. Either 40, 56, 64, 80, 128, 192, or
256 bits in length.

>>> from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
>>> algorithm = algorithms.ARC4(key)
>>> cipher = Cipher(algorithm, mode=None)
>>> encryptor = cipher.encryptor()
>>> ct = encryptor.update(b"a secret message")
>>> decryptor = cipher.decryptor()
>>> decryptor.update(ct)
b'a secret message'

class cryptography.hazmat.primitives.ciphers.algorithms.IDEA(key)

Warning: This algorithm has been deprecated and moved to the Decrepit cryptography module. If you
need to continue using it then update your code to use the new module path. It will be removed from this
namespace in 45.0.0.

IDEA (International Data Encryption Algorithm) is a block cipher created in 1991. It is an optional component
of the OpenPGP standard. This cipher is susceptible to attacks when using weak keys. It is recommended that
you do not use this cipher for new applications.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 128 bits in length.

Modes

class cryptography.hazmat.primitives.ciphers.modes.CBC(initialization_vector)
CBC (Cipher Block Chaining) is a mode of operation for block ciphers. It is considered cryptographically strong.

Padding is required when using this mode.

Parameters
initialization_vector (bytes-like) – Must be random bytes. They do not need to be kept se-
cret and they can be included in a transmitted message. Must be the same number of bytes as the
block_size of the cipher. Each time something is encrypted a new initialization_vector
should be generated. Do not reuse an initialization_vector with a given key, and partic-
ularly do not use a constant initialization_vector.

A good construction looks like:

>>> import os
>>> from cryptography.hazmat.primitives.ciphers.modes import CBC
>>> iv = os.urandom(16)
>>> mode = CBC(iv)

While the following is bad and will leak information:

>>> from cryptography.hazmat.primitives.ciphers.modes import CBC
>>> iv = b"a" * 16
>>> mode = CBC(iv)

192 Chapter 2. Layout

https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
https://www.openpgp.org/

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.ciphers.modes.CTR(nonce)

Warning: Counter mode is not recommended for use with block ciphers that have a block size of less than
128-bits.

CTR (Counter) is a mode of operation for block ciphers. It is considered cryptographically strong. It transforms
a block cipher into a stream cipher.

This mode does not require padding.

Parameters
nonce (bytes-like) – Should be unique, a nonce. It is critical to never reuse a nonce with a
given key. Any reuse of a nonce with the same key compromises the security of every message
encrypted with that key. Must be the same number of bytes as the block_size of the cipher with
a given key. The nonce does not need to be kept secret and may be included with the ciphertext.

class cryptography.hazmat.primitives.ciphers.modes.OFB(initialization_vector)
OFB (Output Feedback) is a mode of operation for block ciphers. It transforms a block cipher into a stream
cipher.

This mode does not require padding.

Parameters
initialization_vector (bytes-like) – Must be random bytes. They do not need to be kept
secret and they can be included in a transmitted message. Must be the same number of bytes as
the block_size of the cipher. Do not reuse an initialization_vector with a given key.

class cryptography.hazmat.primitives.ciphers.modes.CFB(initialization_vector)
CFB (Cipher Feedback) is a mode of operation for block ciphers. It transforms a block cipher into a stream
cipher.

This mode does not require padding.

Parameters
initialization_vector (bytes-like) – Must be random bytes. They do not need to be kept
secret and they can be included in a transmitted message. Must be the same number of bytes as
the block_size of the cipher. Do not reuse an initialization_vector with a given key.

class cryptography.hazmat.primitives.ciphers.modes.CFB8(initialization_vector)
CFB (Cipher Feedback) is a mode of operation for block ciphers. It transforms a block cipher into a stream
cipher. The CFB8 variant uses an 8-bit shift register.

This mode does not require padding.

Parameters
initialization_vector (bytes-like) – Must be random bytes. They do not need to be kept
secret and they can be included in a transmitted message. Must be the same number of bytes as
the block_size of the cipher. Do not reuse an initialization_vector with a given key.

class cryptography.hazmat.primitives.ciphers.modes.GCM(initialization_vector, tag=None,
min_tag_length=16)

Danger: If you are encrypting data that can fit into memory you should strongly consider using AESGCM
instead of this.

2.3. Primitives 193

Cryptography Documentation, Release 43.0.0.dev1

When using this mode you must not use the decrypted data until the appropriate finalization method
(finalize() or finalize_with_tag()) has been called. GCM provides no guarantees of ciphertext in-
tegrity until decryption is complete.

GCM (Galois Counter Mode) is a mode of operation for block ciphers. An AEAD (authenticated encryption
with additional data) mode is a type of block cipher mode that simultaneously encrypts the message as well as
authenticating it. Additional unencrypted data may also be authenticated. Additional means of verifying integrity
such as HMAC are not necessary.

This mode does not require padding.

Parameters
initialization_vector (bytes-like) – Must be unique, a nonce. They do not need to be
kept secret and they can be included in a transmitted message. NIST recommends a 96-bit
IV length for performance critical situations but it can be up to 264 - 1 bits. Do not reuse an
initialization_vector with a given key.

Note: Cryptography will generate a 128-bit tag when finalizing encryption. You can shorten a tag by truncating
it to the desired length but this is not recommended as it makes it easier to forge messages, and also potentially
leaks the key (NIST SP-800-38D recommends 96-bits or greater). Applications wishing to allow truncation can
pass the min_tag_length parameter.

Changed in version 0.5: The min_tag_length parameter was added in 0.5, previously truncation down to 4
bytes was always allowed.

Parameters

• tag (bytes) – The tag bytes to verify during decryption. When encrypting this must
be None. When decrypting, it may be None if the tag is supplied on finalization using
finalize_with_tag(). Otherwise, the tag is mandatory.

• min_tag_length (int) – The minimum length tag must be. By default this is 16, mean-
ing tag truncation is not allowed. Allowing tag truncation is strongly discouraged for most
applications.

Raises
ValueError – This is raised if len(tag) < min_tag_length or the
initialization_vector is too short.

An example of securely encrypting and decrypting data with AES in the GCM mode looks like:

import os

from cryptography.hazmat.primitives.ciphers import (
Cipher, algorithms, modes

)

def encrypt(key, plaintext, associated_data):
Generate a random 96-bit IV.
iv = os.urandom(12)

Construct an AES-GCM Cipher object with the given key and a
randomly generated IV.

(continues on next page)

194 Chapter 2. Layout

https://csrc.nist.gov/pubs/sp/800/38/d/final
https://csrc.nist.gov/pubs/sp/800/38/d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

encryptor = Cipher(
algorithms.AES(key),
modes.GCM(iv),

).encryptor()

associated_data will be authenticated but not encrypted,
it must also be passed in on decryption.
encryptor.authenticate_additional_data(associated_data)

Encrypt the plaintext and get the associated ciphertext.
GCM does not require padding.
ciphertext = encryptor.update(plaintext) + encryptor.finalize()

return (iv, ciphertext, encryptor.tag)

def decrypt(key, associated_data, iv, ciphertext, tag):
Construct a Cipher object, with the key, iv, and additionally the
GCM tag used for authenticating the message.
decryptor = Cipher(

algorithms.AES(key),
modes.GCM(iv, tag),

).decryptor()

We put associated_data back in or the tag will fail to verify
when we finalize the decryptor.
decryptor.authenticate_additional_data(associated_data)

Decryption gets us the authenticated plaintext.
If the tag does not match an InvalidTag exception will be raised.
return decryptor.update(ciphertext) + decryptor.finalize()

iv, ciphertext, tag = encrypt(
key,
b"a secret message!",
b"authenticated but not encrypted payload"

)

print(decrypt(
key,
b"authenticated but not encrypted payload",
iv,
ciphertext,
tag

))

b'a secret message!'

class cryptography.hazmat.primitives.ciphers.modes.XTS(tweak)
Added in version 2.1.

2.3. Primitives 195

Cryptography Documentation, Release 43.0.0.dev1

Warning: XTS mode is meant for disk encryption and should not be used in other contexts. cryptography
only supports XTS mode with AES.

Note: AES XTS keys are double length. This means that to do AES-128 encryption in XTS mode you need a
256-bit key. Similarly, AES-256 requires passing a 512-bit key. AES 192 is not supported in XTS mode.

XTS (XEX-based tweaked-codebook mode with ciphertext stealing) is a mode of operation for the AES block
cipher that is used for disk encryption.

This mode does not require padding.

Parameters
tweak (bytes-like) – The tweak is a 16 byte value typically derived from something like the disk
sector number. A given (tweak, key) pair should not be reused, although doing so is less
catastrophic than in CTR mode.

Insecure modes

Warning: These modes are insecure. New applications should never make use of them, and existing applications
should strongly consider migrating away.

class cryptography.hazmat.primitives.ciphers.modes.ECB

ECB (Electronic Code Book) is the simplest mode of operation for block ciphers. Each block of data is encrypted
in the same way. This means identical plaintext blocks will always result in identical ciphertext blocks, which
can leave significant patterns in the output.

Padding is required when using this mode.

Interfaces

class cryptography.hazmat.primitives.ciphers.CipherContext

When calling encryptor() or decryptor() on a Cipher object the result will conform to the CipherContext
interface. You can then call update(data) with data until you have fed everything into the context. Once that
is done call finalize() to finish the operation and obtain the remainder of the data.

Block ciphers require that the plaintext or ciphertext always be a multiple of their block size. Because of that
padding is sometimes required to make a message the correct size. CipherContext will not automatically
apply any padding; you’ll need to add your own. For block ciphers the recommended padding is PKCS7. If you
are using a stream cipher mode (such as CTR) you don’t have to worry about this.

update(data)

Parameters
data (bytes-like) – The data you wish to pass into the context.

Return bytes
Returns the data that was encrypted or decrypted.

Raises
cryptography.exceptions.AlreadyFinalized – See finalize()

196 Chapter 2. Layout

https://en.wikipedia.org/wiki/Disk_encryption_theory#XTS
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_(ECB)

Cryptography Documentation, Release 43.0.0.dev1

When the Cipher was constructed in a mode that turns it into a stream cipher (e.g. CTR), this will return
bytes immediately, however in other modes it will return chunks whose size is determined by the cipher’s
block size.

update_into(data, buf)
Added in version 1.8.

Warning: This method allows you to avoid a memory copy by passing a writable buffer and reading
the resulting data. You are responsible for correctly sizing the buffer and properly handling the data.
This method should only be used when extremely high performance is a requirement and you will be
making many small calls to update_into.

Parameters

• data (bytes-like) – The data you wish to pass into the context.

• buf – A writable Python buffer that the data will be written into. This buffer should be
len(data) + n - 1 bytes where n is the block size (in bytes) of the cipher and mode
combination.

Return int
Number of bytes written.

Raises
ValueError – This is raised if the supplied buffer is too small.

>>> import os
>>> from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
>>> key = os.urandom(32)
>>> iv = os.urandom(16)
>>> cipher = Cipher(algorithms.AES(key), modes.CBC(iv))
>>> encryptor = cipher.encryptor()
>>> # the buffer needs to be at least len(data) + n - 1 where n is cipher/mode␣
→˓block size in bytes
>>> buf = bytearray(31)
>>> len_encrypted = encryptor.update_into(b"a secret message", buf)
>>> # get the ciphertext from the buffer reading only the bytes written to it␣
→˓(len_encrypted)
>>> ct = bytes(buf[:len_encrypted]) + encryptor.finalize()
>>> decryptor = cipher.decryptor()
>>> len_decrypted = decryptor.update_into(ct, buf)
>>> # get the plaintext from the buffer reading only the bytes written (len_
→˓decrypted)
>>> bytes(buf[:len_decrypted]) + decryptor.finalize()
b'a secret message'

finalize()

Return bytes
Returns the remainder of the data.

Raises
ValueError – This is raised when the data provided isn’t a multiple of the algorithm’s block
size.

2.3. Primitives 197

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

Once finalize is called this object can no longer be used and update() and finalize() will raise an
AlreadyFinalized exception.

class cryptography.hazmat.primitives.ciphers.AEADCipherContext

When calling encryptor or decryptor on a Cipher object with an AEAD mode (e.g. GCM) the result will
conform to the AEADCipherContext and CipherContext interfaces. If it is an encryption or decryption con-
text it will additionally be an AEADEncryptionContext or AEADDecryptionContext instance, respectively.
AEADCipherContext contains an additional method authenticate_additional_data() for adding addi-
tional authenticated but unencrypted data (see note below). You should call this before calls to update. When
you are done call finalize to finish the operation.

Note: In AEAD modes all data passed to update() will be both encrypted and authenticated. Do not pass
encrypted data to the authenticate_additional_data() method. It is meant solely for additional data you
may want to authenticate but leave unencrypted.

authenticate_additional_data(data)

Parameters
data (bytes-like) – Any data you wish to authenticate but not encrypt.

Raises
AlreadyFinalized

class cryptography.hazmat.primitives.ciphers.AEADEncryptionContext

When creating an encryption context using encryptor on a Cipher object with an AEAD mode such as GCM an
object conforming to both the AEADEncryptionContext and AEADCipherContext interfaces will be returned.
This interface provides one additional attribute tag. tag can only be obtained after finalize has been called.

tag

Return bytes
Returns the tag value as bytes.

Raises
NotYetFinalized if called before the context is finalized.

class cryptography.hazmat.primitives.ciphers.AEADDecryptionContext

Added in version 1.9.

When creating an encryption context using decryptor on a Cipher object with an AEAD mode such as GCM an
object conforming to both the AEADDecryptionContext and AEADCipherContext interfaces will be returned.
This interface provides one additional method finalize_with_tag() that allows passing the authentication
tag for validation after the ciphertext has been decrypted.

finalize_with_tag(tag)

Parameters
tag (bytes) – The tag bytes to verify after decryption.

Return bytes
Returns the remainder of the data.

Raises
ValueError – This is raised when the data provided isn’t a multiple of the algorithm’s
block size, if min_tag_length is less than 4, or if len(tag) < min_tag_length.
min_tag_length is an argument to the GCM constructor.

If the authentication tag was not already supplied to the constructor of the GCM mode object, this method
must be used instead of finalize().

198 Chapter 2. Layout

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.primitives.ciphers.CipherAlgorithm

A named symmetric encryption algorithm.

name

Type
str

The standard name for the mode, for example, “AES”, “Camellia”, or “Blowfish”.

key_size

Type
int

The number of bits in the key being used.

class cryptography.hazmat.primitives.ciphers.BlockCipherAlgorithm

A block cipher algorithm.

block_size

Type
int

The number of bits in a block.

Interfaces used by the symmetric cipher modes described in Symmetric Encryption Modes.

class cryptography.hazmat.primitives.ciphers.modes.Mode

A named cipher mode.

name

Type
str

This should be the standard shorthand name for the mode, for example Cipher-Block Chaining mode is
“CBC”.

validate_for_algorithm(algorithm)

Parameters
algorithm (cryptography.hazmat.primitives.ciphers.CipherAlgorithm)

Checks that the combination of this mode with the provided algorithm meets any necessary invariants. This
should raise an exception if they are not met.

For example, the CBC mode uses this method to check that the provided initialization vector’s length matches
the block size of the algorithm.

class cryptography.hazmat.primitives.ciphers.modes.ModeWithInitializationVector

A cipher mode with an initialization vector.

initialization_vector

Type
bytes-like

Exact requirements of the initialization are described by the documentation of individual modes.

class cryptography.hazmat.primitives.ciphers.modes.ModeWithNonce

A cipher mode with a nonce.

2.3. Primitives 199

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Cryptography Documentation, Release 43.0.0.dev1

nonce

Type
bytes-like

Exact requirements of the nonce are described by the documentation of individual modes.

class cryptography.hazmat.primitives.ciphers.modes.ModeWithAuthenticationTag

A cipher mode with an authentication tag.

tag

Type
bytes-like

Exact requirements of the tag are described by the documentation of individual modes.

class cryptography.hazmat.primitives.ciphers.modes.ModeWithTweak

Added in version 2.1.

A cipher mode with a tweak.

tweak

Type
bytes-like

Exact requirements of the tweak are described by the documentation of individual modes.

Exceptions

class cryptography.exceptions.InvalidTag

This is raised if an authenticated encryption tag fails to verify during decryption.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.3.9 Symmetric Padding

Padding is a way to take data that may or may not be a multiple of the block size for a cipher and extend it out so that
it is. This is required for many block cipher modes as they require the data to be encrypted to be an exact multiple of
the block size.

class cryptography.hazmat.primitives.padding.PKCS7(block_size)
PKCS7 padding is a generalization of PKCS5 padding (also known as standard padding). PKCS7 padding works
by appending N bytes with the value of chr(N), where N is the number of bytes required to make the final block
of data the same size as the block size. A simple example of padding is:

>>> from cryptography.hazmat.primitives import padding
>>> padder = padding.PKCS7(128).padder()
>>> padded_data = padder.update(b"11111111111111112222222222")
>>> padded_data
b'1111111111111111'

(continues on next page)

200 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

>>> padded_data += padder.finalize()
>>> padded_data
b'11111111111111112222222222\x06\x06\x06\x06\x06\x06'
>>> unpadder = padding.PKCS7(128).unpadder()
>>> data = unpadder.update(padded_data)
>>> data
b'1111111111111111'
>>> data + unpadder.finalize()
b'11111111111111112222222222'

Parameters
block_size – The size of the block in bits that the data is being padded to.

Raises
ValueError – Raised if block size is not a multiple of 8 or is not between 0 and 2040 inclusive.

padder()

Returns
A padding PaddingContext instance.

unpadder()

Returns
An unpadding PaddingContext instance.

class cryptography.hazmat.primitives.padding.ANSIX923(block_size)
Added in version 1.3.

ANSI X9.23 padding works by appending N-1 bytes with the value of 0 and a last byte with the value of chr(N),
where N is the number of bytes required to make the final block of data the same size as the block size. A simple
example of padding is:

>>> padder = padding.ANSIX923(128).padder()
>>> padded_data = padder.update(b"11111111111111112222222222")
>>> padded_data
b'1111111111111111'
>>> padded_data += padder.finalize()
>>> padded_data
b'11111111111111112222222222\x00\x00\x00\x00\x00\x06'
>>> unpadder = padding.ANSIX923(128).unpadder()
>>> data = unpadder.update(padded_data)
>>> data
b'1111111111111111'
>>> data + unpadder.finalize()
b'11111111111111112222222222'

Parameters
block_size – The size of the block in bits that the data is being padded to.

Raises
ValueError – Raised if block size is not a multiple of 8 or is not between 0 and 2040 inclusive.

2.3. Primitives 201

https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#ANSI_X9.23
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

padder()

Returns
A padding PaddingContext instance.

unpadder()

Returns
An unpadding PaddingContext instance.

class cryptography.hazmat.primitives.padding.PaddingContext

When calling padder() or unpadder() the result will conform to the PaddingContext interface. You can then
call update(data) with data until you have fed everything into the context. Once that is done call finalize()
to finish the operation and obtain the remainder of the data.

update(data)

Parameters
data (bytes-like) – The data you wish to pass into the context.

Return bytes
Returns the data that was padded or unpadded.

Raises

• TypeError – Raised if data is not bytes.

• cryptography.exceptions.AlreadyFinalized – See finalize().

• TypeError – This exception is raised if data is not bytes.

finalize()

Finalize the current context and return the rest of the data.

After finalize has been called this object can no longer be used; update() and finalize() will raise
an AlreadyFinalized exception.

Return bytes
Returns the remainder of the data.

Raises

• TypeError – Raised if data is not bytes.

• ValueError – When trying to remove padding from incorrectly padded data.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

202 Chapter 2. Layout

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Cryptography Documentation, Release 43.0.0.dev1

2.3.10 Two-factor authentication

This module contains algorithms related to two-factor authentication.

Currently, it contains an algorithm for generating and verifying one time password values based on Hash-based message
authentication codes (HMAC).

class cryptography.hazmat.primitives.twofactor.InvalidToken

This is raised when the verify method of a one time password function’s computed token does not match the
expected token.

cryptography.hazmat.primitives.twofactor.hotp.HOTPHashTypes

Added in version 40.0.0.

Type alias: A union of supported hash algorithm types: SHA1, SHA256 or SHA512.

class cryptography.hazmat.primitives.twofactor.hotp.HOTP(key, length, algorithm, *,
enforce_key_length=True)

Added in version 0.3.

HOTP objects take a key, length and algorithm parameter. The key should be randomly generated bytes and
is recommended to be 160 bits in length. The length parameter controls the length of the generated one time
password and must be >= 6 and <= 8.

This is an implementation of RFC 4226.

>>> import os
>>> from cryptography.hazmat.primitives.twofactor.hotp import HOTP
>>> from cryptography.hazmat.primitives.hashes import SHA1
>>> key = os.urandom(20)
>>> hotp = HOTP(key, 6, SHA1())
>>> hotp_value = hotp.generate(0)
>>> hotp.verify(hotp_value, 0)

Parameters

• key (bytes-like) – Per-user secret key. This value must be kept secret and be at least 128 bits.
It is recommended that the key be 160 bits.

• length (int) – Length of generated one time password as int.

• algorithm (cryptography.hazmat.primitives.hashes.HashAlgorithm) – A
hashes instance (must match HOTPHashTypes).

• enforce_key_length – A boolean flag defaulting to True that toggles whether a minimum
key length of 128 bits is enforced. This exists to work around the fact that as documented in
Issue #2915, the Google Authenticator PAM module by default generates 80 bit keys. If this
flag is set to False, the application developer should implement additional checks of the key
length before passing it into HOTP.

Added in version 1.5.

Raises

• ValueError – This is raised if the provided key is shorter than 128 bits or if the length
parameter is not 6, 7 or 8.

• TypeError – This is raised if the provided algorithm is not SHA1(), SHA256() or
SHA512() or if the length parameter is not an integer.

2.3. Primitives 203

https://datatracker.ietf.org/doc/html/rfc4226.html
https://docs.python.org/3/library/functions.html#int
https://github.com/pyca/cryptography/issues/2915
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

generate(counter)

Parameters
counter (int) – The counter value used to generate the one time password.

Return bytes
A one time password value.

verify(hotp, counter)

Parameters

• hotp (bytes) – The one time password value to validate.

• counter (int) – The counter value to validate against.

Raises
cryptography.hazmat.primitives.twofactor.InvalidToken – This is raised when
the supplied HOTP does not match the expected HOTP.

get_provisioning_uri(account_name, counter, issuer)
Added in version 1.0.

Parameters

• account_name (str) – The display name of account, such as 'Alice Smith' or
'alice@example.com'.

• issuer (str or None) – The optional display name of issuer. This is typically the provider
or service the user wants to access using the OTP token.

• counter (int) – The current value of counter.

Returns
A URI string.

Throttling

Due to the fact that the HOTP algorithm generates rather short tokens that are 6 - 8 digits long, brute force attacks are
possible. It is highly recommended that the server that validates the token implement a throttling scheme that locks out
the account for a period of time after a number of failed attempts. The number of allowed attempts should be as low as
possible while still ensuring that usability is not significantly impacted.

Re-synchronization of the counter

The server’s counter value should only be incremented on a successful HOTP authentication. However, the counter on
the client is incremented every time a new HOTP value is requested. This can lead to the counter value being out of
synchronization between the client and server.

Due to this, it is highly recommended that the server sets a look-ahead window that allows the server to calculate the
next x HOTP values and check them against the supplied HOTP value. This can be accomplished with something
similar to the following code.

def verify(hotp, counter, look_ahead):
assert look_ahead >= 0
correct_counter = None

otp = HOTP(key, 6)
(continues on next page)

204 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

for count in range(counter, counter + look_ahead):
try:

otp.verify(hotp, count)
correct_counter = count

except InvalidToken:
pass

return correct_counter

class cryptography.hazmat.primitives.twofactor.totp.TOTP(key, length, algorithm, time_step, *,
enforce_key_length=True)

TOTP objects take a key, length, algorithm and time_step parameter. The key should be randomly gen-
erated bytes and is recommended to be as long as your hash function’s output (e.g 256-bit for SHA256). The
length parameter controls the length of the generated one time password and must be >= 6 and <= 8.

This is an implementation of RFC 6238.

>>> import os
>>> import time
>>> from cryptography.hazmat.primitives.twofactor.totp import TOTP
>>> from cryptography.hazmat.primitives.hashes import SHA1
>>> key = os.urandom(20)
>>> totp = TOTP(key, 8, SHA1(), 30)
>>> time_value = time.time()
>>> totp_value = totp.generate(time_value)
>>> totp.verify(totp_value, time_value)

Parameters

• key (bytes-like) – Per-user secret key. This value must be kept secret and be at least 128 bits.
It is recommended that the key be 160 bits.

• length (int) – Length of generated one time password as int.

• algorithm (cryptography.hazmat.primitives.hashes.HashAlgorithm) – A
hashes instance.

• time_step (int) – The time step size. The recommended size is 30.

• enforce_key_length – A boolean flag defaulting to True that toggles whether a minimum
key length of 128 bits is enforced. This exists to work around the fact that as documented in
Issue #2915, the Google Authenticator PAM module by default generates 80 bit keys. If this
flag is set to False, the application develop should implement additional checks of the key
length before passing it into TOTP.

Added in version 1.5.

Raises

• ValueError – This is raised if the provided key is shorter than 128 bits or if the length
parameter is not 6, 7 or 8.

• TypeError – This is raised if the provided algorithm is not SHA1(), SHA256() or
SHA512() or if the length parameter is not an integer.

generate(time)

2.3. Primitives 205

https://datatracker.ietf.org/doc/html/rfc6238.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/pyca/cryptography/issues/2915
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

Cryptography Documentation, Release 43.0.0.dev1

Parameters
time (int) – The time value used to generate the one time password.

Return bytes
A one time password value.

verify(totp, time)

Parameters

• totp (bytes) – The one time password value to validate.

• time (int) – The time value to validate against.

Raises
cryptography.hazmat.primitives.twofactor.InvalidToken – This is raised when
the supplied TOTP does not match the expected TOTP.

get_provisioning_uri(account_name, issuer)
Added in version 1.0.

Parameters

• account_name (str) – The display name of account, such as 'Alice Smith' or
'alice@example.com'.

• issuer (str or None) – The optional display name of issuer. This is typically the provider
or service the user wants to access using the OTP token.

Returns
A URI string.

Provisioning URI

The provisioning URI of HOTP and TOTP is a feature of Google Authenticator and not actually part of the HOTP
or TOTP RFCs. However, it is widely supported by web sites and mobile applications which are using Two-Factor
authentication.

For generating a provisioning URI you can use the get_provisioning_uri method of HOTP/TOTP instances.

counter = 5
account_name = 'alice@example.com'
issuer_name = 'Example Inc'

hotp_uri = hotp.get_provisioning_uri(account_name, counter, issuer_name)
totp_uri = totp.get_provisioning_uri(account_name, issuer_name)

A common usage is encoding the provisioning URI into QR code and guiding users to scan it with Two-Factor authen-
tication applications in their mobile devices.

206 Chapter 2. Layout

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/google/google-authenticator/wiki/Key-Uri-Format

Cryptography Documentation, Release 43.0.0.dev1

2.4 Exceptions

class cryptography.exceptions.UnsupportedAlgorithm

Raised when the requested algorithm, or combination of algorithms is not supported.

class cryptography.exceptions.AlreadyFinalized

This is raised when a context is used after being finalized.

class cryptography.exceptions.InvalidSignature

This is raised when signature verification fails. This can occur with HMAC or asymmetric key signature valida-
tion.

class cryptography.exceptions.NotYetFinalized

This is raised when the AEAD tag property is accessed on a context before it is finalized.

class cryptography.exceptions.AlreadyUpdated

This is raised when additional data is added to a context after update has already been called.

class cryptography.exceptions.InvalidKey

This is raised when the verify method of a key derivation function’s computed key does not match the expected
key.

2.5 Random number generation

When generating random data for use in cryptographic operations, such as an initialization vector for encryption in CBC
mode, you do not want to use the standard randommodule APIs. This is because they do not provide a cryptographically
secure random number generator, which can result in major security issues depending on the algorithms in use.

Therefore, it is our recommendation to always use your operating system’s provided random number generator, which
is available as os.urandom(). For example, if you need 16 bytes of random data for an initialization vector, you can
obtain them with:

>>> import os
>>> iv = os.urandom(16)

If you need your random number as an big integer, you can use int.from_bytes to convert the result of os.urandom:

>>> serial = int.from_bytes(os.urandom(16), byteorder="big")

In addition, the Python standard library includes the secrets module, which can be used for generating cryptograph-
ically secure random numbers, with specific helpers for text-based formats.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.4. Exceptions 207

https://docs.python.org/3/library/random.html#module-random
https://sockpuppet.org/blog/2014/02/25/safely-generate-random-numbers/
https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3/library/secrets.html

Cryptography Documentation, Release 43.0.0.dev1

2.6 Decrepit cryptography

This module holds old, deprecated, and/or insecure cryptographic algorithms that may be needed in exceptional cases
for backwards compatibility or interoperability reasons. Unless necessary their use is strongly discouraged.

This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that you know what
you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

2.6.1 Decrepit Symmetric algorithms

This module contains decrepit symmetric encryption algorithms. These are algorithms that should not be used unless
necessary for backwards compatibility or interoperability with legacy systems. Their use is strongly discouraged.

These algorithms require you to use a Cipher object along with the appropriate modes.

class cryptography.hazmat.decrepit.ciphers.ARC4(key)
Added in version 43.0.0.

ARC4 (Alleged RC4) is a stream cipher with serious weaknesses in its initial stream output. Its use is strongly
discouraged. ARC4 does not use mode constructions.

Parameters
key (bytes-like) – The secret key. This must be kept secret. Either 40, 56, 64, 80, 128, 192, or
256 bits in length.

>>> import os
>>> from cryptography.hazmat.decrepit.ciphers.algorithms import ARC4
>>> from cryptography.hazmat.primitives.ciphers import Cipher, modes
>>> key = os.urandom(16)
>>> algorithm = ARC4(key)
>>> cipher = Cipher(algorithm, mode=None)
>>> encryptor = cipher.encryptor()
>>> ct = encryptor.update(b"a secret message")
>>> decryptor = cipher.decryptor()
>>> decryptor.update(ct)
b'a secret message'

class cryptography.hazmat.decrepit.ciphers.TripleDES(key)
Added in version 43.0.0.

Triple DES (Data Encryption Standard), sometimes referred to as 3DES, is a block cipher standardized by NIST.
Triple DES has known crypto-analytic flaws, however none of them currently enable a practical attack. Nonethe-
less, Triple DES is not recommended for new applications because it is incredibly slow; old applications should
consider moving away from it.

Parameters
key (bytes-like) – The secret key. This must be kept secret. Either 64, 128, or 192 bits long.
DES only uses 56, 112, or 168 bits of the key as there is a parity byte in each component of the
key. Some writing refers to there being up to three separate keys that are each 56 bits long, they
can simply be concatenated to produce the full key.

208 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

class cryptography.hazmat.decrepit.ciphers.CAST5(key)
Added in version 43.0.0.

CAST5 (also known as CAST-128) is a block cipher approved for use in the Canadian government by the Com-
munications Security Establishment. It is a variable key length cipher and supports keys from 40-128 bits in
length.

Parameters
key (bytes-like) – The secret key, This must be kept secret. 40 to 128 bits in length in increments
of 8 bits.

>>> import os
>>> from cryptography.hazmat.decrepit.ciphers.algorithms import CAST5
>>> from cryptography.hazmat.primitives.ciphers import Cipher, modes
>>> key = os.urandom(16)
>>> iv = os.urandom(8)
>>> algorithm = CAST5(key)
>>> cipher = Cipher(algorithm, modes.CBC(iv))
>>> encryptor = cipher.encryptor()
>>> ct = encryptor.update(b"a secret message")
>>> decryptor = cipher.decryptor()
>>> decryptor.update(ct)
b'a secret message'

class cryptography.hazmat.decrepit.ciphers.SEED(key)
Added in version 43.0.0.

SEED is a block cipher developed by the Korea Information Security Agency (KISA). It is defined in RFC 4269
and is used broadly throughout South Korean industry, but rarely found elsewhere.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 128 bits in length.

class cryptography.hazmat.decrepit.ciphers.Blowfish(key)
Added in version 43.0.0.

Blowfish is a block cipher developed by Bruce Schneier. It is known to be susceptible to attacks when using
weak keys. The author has recommended that users of Blowfish move to newer algorithms.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 32 to 448 bits in length in increments
of 8 bits.

class cryptography.hazmat.decrepit.ciphers.IDEA(key)
Added in version 43.0.0.

IDEA (International Data Encryption Algorithm) is a block cipher created in 1991. It is an optional component
of the OpenPGP standard. This cipher is susceptible to attacks when using weak keys. It is recommended that
you do not use this cipher for new applications.

Parameters
key (bytes-like) – The secret key. This must be kept secret. 128 bits in length.

2.6. Decrepit cryptography 209

https://www.cse-cst.gc.ca
https://www.cse-cst.gc.ca
https://datatracker.ietf.org/doc/html/rfc4269.html
https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
https://www.openpgp.org/

Cryptography Documentation, Release 43.0.0.dev1

2.7 Installation

You can install cryptography with pip:

$ pip install cryptography

If this does not work please upgrade your pip first, as that is the single most common cause of installation problems.

2.7.1 Supported platforms

Currently we test cryptography on Python 3.7+ and PyPy3 7.3.11+ on these operating systems.

• x86-64 RHEL 8.x

• x86-64 CentOS 9 Stream

• x86-64 Fedora (latest)

• x86-64 macOS 13 Ventura and ARM64 macOS 14 Sonoma

• x86-64 Ubuntu 20.04, 22.04, 24.04, rolling

• ARM64 Ubuntu rolling

• x86-64 Debian Buster (10.x), Bullseye (11.x), Bookworm (12.x), Trixie (13.x), and Sid (unstable)

• x86-64 and ARM64 Alpine (latest)

• 32-bit and 64-bit Python on 64-bit Windows Server 2022

We test compiling with clang as well as gcc and use the following OpenSSL releases in addition to distribution
provided releases from the above supported platforms:

• OpenSSL 3.0-latest

• OpenSSL 3.1-latest

• OpenSSL 3.2-latest

• OpenSSL 3.3-latest

We also test against the latest commit of BoringSSL as well as versions of LibreSSL that are receiving security support
at the time of a given cryptography release.

2.7.2 Building cryptography on Windows

The wheel package on Windows is a statically linked build (as of 0.5) so all dependencies are included. To install
cryptography, you will typically just run

$ pip install cryptography

If you prefer to compile it yourself you’ll need to have OpenSSL installed. You can compile OpenSSL yourself as well or
use a binary distribution. Be sure to download the proper version for your architecture and Python (VC2015 is required
for 3.7 and above). Wherever you place your copy of OpenSSL you’ll need to set the OPENSSL_DIR environment
variable to include the proper location. For example:

C:\> \path\to\vcvarsall.bat x86_amd64
C:\> set OPENSSL_DIR=C:\OpenSSL-win64
C:\> pip install cryptography

210 Chapter 2. Layout

https://wiki.openssl.org/index.php/Binaries

Cryptography Documentation, Release 43.0.0.dev1

You will also need to have Rust installed and available.

If you need to rebuild cryptography for any reason be sure to clear the local wheel cache.

2.7.3 Building cryptography on Linux

Note: You should upgrade pip and attempt to install cryptography again before following the instructions to
compile it below. Most Linux platforms will receive a binary wheel and require no compiler if you have an updated
pip!

cryptography ships manylinux wheels (as of 2.0) so all dependencies are included. For users on pip 19.3 or above
running on a manylinux2014 (or greater) compatible distribution (or pip 21.2.4 for musllinux) all you should need
to do is:

$ pip install cryptography

If you want to compile cryptography yourself you’ll need a C compiler, a Rust compiler, headers for Python (if you’re
not using pypy), and headers for the OpenSSL and libffi libraries available on your system.

On all Linux distributions you will need to have Rust installed and available.

Alpine

Warning: The Rust available by default in Alpine < 3.17 is older than the minimum supported version. See the
Rust installation instructions for information about installing a newer Rust.

$ sudo apk add gcc musl-dev python3-dev libffi-dev openssl-dev cargo pkgconfig

If you get an error with openssl-dev you may have to use libressl-dev.

Debian/Ubuntu

Warning: The Rust available in Debian versions prior to Bookworm are older than the minimum supported
version. See the Rust installation instructions for information about installing a newer Rust.

$ sudo apt-get install build-essential libssl-dev libffi-dev \
python3-dev cargo pkg-config

2.7. Installation 211

https://pip.pypa.io/en/stable/cli/pip_install/#caching

Cryptography Documentation, Release 43.0.0.dev1

Fedora/RHEL/CentOS

Warning: For RHEL and CentOS you must be on version 8.8 or newer for the command below to install a
sufficiently new Rust. If your Rust is less than 1.65.0 please see the Rust installation instructions for information
about installing a newer Rust.

$ sudo dnf install redhat-rpm-config gcc libffi-devel python3-devel \
openssl-devel cargo pkg-config

Building

You should now be able to build and install cryptography. To avoid getting the pre-built wheel on manylinux compat-
ible distributions you’ll need to use --no-binary.

$ pip install cryptography --no-binary cryptography

Using your own OpenSSL on Linux

Python links to OpenSSL for its own purposes and this can sometimes cause problems when you wish to use a different
version of OpenSSL with cryptography. If you want to use cryptography with your own build of OpenSSL you will
need to make sure that the build is configured correctly so that your version of OpenSSL doesn’t conflict with Python’s.

The options you need to add allow the linker to identify every symbol correctly even when multiple versions of the
library are linked into the same program. If you are using your distribution’s source packages these will probably be
patched in for you already, otherwise you’ll need to use options something like this when configuring OpenSSL:

$./config -Wl,-Bsymbolic-functions -fPIC shared

Static Wheels

Cryptography ships statically-linked wheels for macOS, Windows, and Linux (via manylinux and musllinux). This
allows compatible environments to use the most recent OpenSSL, regardless of what is shipped by default on those
platforms.

If you are using a platform not covered by our wheels, you can build your own statically-linked wheels that will work
on your own systems. This will allow you to continue to use relatively old Linux distributions (such as LTS releases),
while making sure you have the most recent OpenSSL available to your Python programs.

To do so, you should find yourself a machine that is as similar as possible to your target environment (e.g. your
production environment): for example, spin up a new cloud server running your target Linux distribution. On this
machine, install the Cryptography dependencies as mentioned in Building cryptography on Linux. Please also make
sure you have virtualenv installed: this should be available from your system package manager.

Then, paste the following into a shell script. You’ll need to populate the OPENSSL_VERSION variable. To do that, visit
openssl.org and find the latest non-FIPS release version number, then set the string appropriately. For example, for
OpenSSL 1.1.1k, use OPENSSL_VERSION="1.1.1k".

When this shell script is complete, you’ll find a collection of wheel files in a directory called wheelhouse. These
wheels can be installed by a sufficiently-recent version of pip. The Cryptography wheel in this directory contains a
statically-linked OpenSSL binding, which ensures that you have access to the most-recent OpenSSL releases without
corrupting your system dependencies.

212 Chapter 2. Layout

https://virtualenv.pypa.io/en/latest/
https://www.openssl.org/source/

Cryptography Documentation, Release 43.0.0.dev1

set -e

OPENSSL_VERSION="VERSIONGOESHERE"
CWD=$(pwd)

virtualenv env
. env/bin/activate
pip install -U setuptools
pip install -U wheel pip
curl -O https://www.openssl.org/source/openssl-${OPENSSL_VERSION}.tar.gz
tar xvf openssl-${OPENSSL_VERSION}.tar.gz
cd openssl-${OPENSSL_VERSION}
./config no-shared no-ssl2 no-ssl3 -fPIC --prefix=${CWD}/openssl
make && make install
cd ..
OPENSSL_DIR="${CWD}/openssl" pip wheel --no-cache-dir --no-binary cryptography␣
→˓cryptography

2.7.4 Building cryptography on macOS

Note: If installation gives a fatal error: 'openssl/aes.h' file not found see the FAQ for information
about how to fix this issue.

The wheel package on macOS is a statically linked build (as of 1.0.1) so for users with pip 8 or above you only need
one step:

$ pip install cryptography

If you want to build cryptography yourself or are on an older macOS version, cryptography requires the presence of
a C compiler, development headers, and the proper libraries. On macOS much of this is provided by Apple’s Xcode
development tools. To install the Xcode command line tools (on macOS 10.10+) open a terminal window and run:

$ xcode-select --install

This will install a compiler (clang) along with (most of) the required development headers.

You will also need to have Rust installed and available, which can be obtained from Homebrew, MacPorts, or directly
from the Rust website. If you are linking against a universal2 archive of OpenSSL, the minimum supported Rust
version is 1.66.0.

Finally you need OpenSSL, which you can obtain from Homebrew or MacPorts. Cryptography does not support the
OpenSSL/LibreSSL libraries Apple ships in its base operating system.

To build cryptography and dynamically link it:

Homebrew

$ brew install openssl@3 rust
$ env OPENSSL_DIR="$(brew --prefix openssl@3)" pip install cryptography

MacPorts:

2.7. Installation 213

https://brew.sh
https://www.macports.org
https://brew.sh
https://www.macports.org
https://brew.sh
https://www.macports.org

Cryptography Documentation, Release 43.0.0.dev1

$ sudo port install openssl rust
$ env OPENSSL_DIR="-L/opt/local" pip install cryptography

You can also build cryptography statically:

Homebrew

$ brew install openssl@3 rust
$ env OPENSSL_STATIC=1 OPENSSL_DIR="$(brew --prefix openssl@3)" pip install cryptography

MacPorts:

$ sudo port install openssl rust
$ env OPENSSL_STATIC=1 OPENSSL_DIR="/opt/local" pip install cryptography

If you need to rebuild cryptography for any reason be sure to clear the local wheel cache.

2.7.5 Rust

Note: If you are using Linux, then you should upgrade pip (in a virtual environment!) and attempt to install
cryptography again before trying to install the Rust toolchain. On most Linux distributions, the latest version of
pip will be able to install a binary wheel, so you won’t need a Rust toolchain.

Building cryptography requires having a working Rust toolchain. The current minimum supported Rust version is
1.65.0. This is newer than the Rust some package managers ship, so users may need to install with the instructions
below.

Instructions for installing Rust can be found on the Rust Project’s website. We recommend installing Rust with rustup
(as documented by the Rust Project) in order to ensure you have a recent version.

Rust is only required when building cryptography, meaning that you may install it for the duration of your pip
install command and then remove it from a system. A Rust toolchain is not required to use cryptography. In
deployments such as docker, you may use a multi-stage Dockerfile where you install Rust during the build phase
but do not install it in the runtime image. This is the same as the C compiler toolchain which is also required to build
cryptography, but not afterwards.

2.8 Changelog

2.8.1 43.0.0 - main

Note: This version is not yet released and is under active development.

• BACKWARDS INCOMPATIBLE: Support for OpenSSL less than 1.1.1e has been removed. Users on older
version of OpenSSL will need to upgrade.

• BACKWARDS INCOMPATIBLE: Dropped support for LibreSSL < 3.8.

• Updated the minimum supported Rust version (MSRV) to 1.65.0, from 1.63.0.

• generate_private_key() now enforces a minimum RSA key size of 1024-bit. Note that 1024-bit is still
considered insecure, users should generally use a key size of 2048-bits.

214 Chapter 2. Layout

https://brew.sh
https://www.macports.org
https://pip.pypa.io/en/stable/cli/pip_install/#caching
https://www.rust-lang.org/tools/install

Cryptography Documentation, Release 43.0.0.dev1

• Added new Decrepit cryptography module which contains outdated and insecure cryptographic primitives.
CAST5, SEED, IDEA , and Blowfish , which were deprecated in 37.0.0, have been added to this module. They
will be removed from the cipher module in 45.0.0.

• Moved TripleDES and ARC4 into Decrepit cryptography and deprecated them in the cipher module. They will
be removed from the cipher module in 48.0.0.

• Added support for deterministic ECDSA (RFC 6979)

• Added support for client certificate verification to the X.509 path validation APIs in the form of
ClientVerifier, VerifiedClient, and PolicyBuilder build_client_verifier().

• Added Certificate public_key_algorithm_oid and Certificate Signing Request
public_key_algorithm_oid to determine the PublicKeyAlgorithmOID Object Identifier of the pub-
lic key found inside the certificate.

• Added invalidity_date_utc, a timezone-aware alternative to the naïve datetime attribute
invalidity_date.

2.8.2 42.0.5 - 2024-02-23

• Limit the number of name constraint checks that will be performed in X.509 path validation to protect
against denial of service attacks.

• Upgrade pyo3 version, which fixes building on PowerPC.

2.8.3 42.0.4 - 2024-02-20

• Fixed a null-pointer-dereference and segfault that could occur when creating a PKCS#12 bundle. Credit to
Alexander-Programming for reporting the issue. CVE-2024-26130

• Fixed ASN.1 encoding for PKCS7/SMIME signed messages. The fields SMIMECapabilities and
SignatureAlgorithmIdentifier should now be correctly encoded according to the definitions in RFC 2633
RFC 3370.

2.8.4 42.0.3 - 2024-02-15

• Fixed an initialization issue that caused key loading failures for some users.

2.8.5 42.0.2 - 2024-01-30

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.2.1.

• Fixed an issue that prevented the use of Python buffer protocol objects in sign and verify methods on asym-
metric keys.

• Fixed an issue with incorrect keyword-argument naming with EllipticCurvePrivateKey exchange(),
X25519PrivateKey exchange(), X448PrivateKey exchange(), and DHPrivateKey exchange().

2.8. Changelog 215

https://datatracker.ietf.org/doc/html/rfc6979.html
https://datatracker.ietf.org/doc/html/rfc2633.html
https://datatracker.ietf.org/doc/html/rfc3370.html

Cryptography Documentation, Release 43.0.0.dev1

2.8.6 42.0.1 - 2024-01-24

• Fixed an issue with incorrect keyword-argument naming with EllipticCurvePrivateKey sign().

• Resolved compatibility issue with loading certain RSA public keys in load_pem_public_key().

2.8.7 42.0.0 - 2024-01-22

• BACKWARDS INCOMPATIBLE: Dropped support for LibreSSL < 3.7.

• BACKWARDS INCOMPATIBLE: Loading a PKCS7 with no content field using
load_pem_pkcs7_certificates() or load_der_pkcs7_certificates() will now raise a ValueError
rather than return an empty list.

• Parsing SSH certificates no longer permits malformed critical options with values, as documented in the 41.0.2
release notes.

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.2.0.

• Updated the minimum supported Rust version (MSRV) to 1.63.0, from 1.56.0.

• We now publish both py37 and py39 abi3 wheels. This should resolve some errors relating to initializing a
module multiple times per process.

• Support PSS for X.509 certificate signing requests and certificate revocation lists with the keyword-
only argument rsa_padding on the sign methods for CertificateSigningRequestBuilder and
CertificateRevocationListBuilder.

• Added support for obtaining X.509 certificate signing request signature algorithm parameters (including PSS)
via signature_algorithm_parameters().

• Added support for obtaining X.509 certificate revocation list signature algorithm parameters (including PSS) via
signature_algorithm_parameters().

• Added mgf property to PSS.

• Added algorithm and mgf properties to OAEP.

• Added the following properties that return timezone-aware datetime objects: not_valid_before_utc(),
not_valid_after_utc(), revocation_date_utc(), next_update_utc(), last_update_utc(). These
are timezone-aware variants of existing properties that return naïve datetime objects.

• Deprecated the following properties that return naïve datetime objects: not_valid_before(),
not_valid_after(), revocation_date(), next_update(), last_update() in favor of the new
timezone-aware variants mentioned above.

• Added support for ChaCha20 on LibreSSL.

• Added support for RSA PSS signatures in PKCS7 with add_signer().

• In the next release (43.0.0) of cryptography, loading an X.509 certificate with a negative serial number will raise
an exception. This has been deprecated since 36.0.0.

• Added support for AESGCMSIV when using OpenSSL 3.2.0+.

• Added the X.509 path validation APIs for Certificate chains. These APIs should be considered unstable
and not subject to our stability guarantees until documented as such in a future release.

• Added support for SM4 GCM when using OpenSSL 3.0 or greater.

216 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

2.8.8 41.0.7 - 2023-11-27

• Fixed compilation when using LibreSSL 3.8.2.

2.8.9 41.0.6 - 2023-11-27

• Fixed a null-pointer-dereference and segfault that could occur when loading certificates from a PKCS#7 bundle.
Credit to pkuzco for reporting the issue. CVE-2023-49083

2.8.10 41.0.5 - 2023-10-24

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.4.

• Added a function to support an upcoming pyOpenSSL release.

2.8.11 41.0.4 - 2023-09-19

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.3.

2.8.12 41.0.3 - 2023-08-01

• Fixed performance regression loading DH public keys.

• Fixed a memory leak when using ChaCha20Poly1305.

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.2.

2.8.13 41.0.2 - 2023-07-10

• Fixed bugs in creating and parsing SSH certificates where critical options with values were handled incorrectly.
Certificates are now created correctly and parsing accepts correct values as well as the previously generated
invalid forms with a warning. In the next release, support for parsing these invalid forms will be removed.

2.8.14 41.0.1 - 2023-06-01

• Temporarily allow invalid ECDSA signature algorithm parameters in X.509 certificates, which are generated by
older versions of Java.

• Allow null bytes in pass phrases when serializing private keys.

2.8.15 41.0.0 - 2023-05-30

• BACKWARDS INCOMPATIBLE: Support for OpenSSL less than 1.1.1d has been removed. Users on older
version of OpenSSL will need to upgrade.

• BACKWARDS INCOMPATIBLE: Support for Python 3.6 has been removed.

• BACKWARDS INCOMPATIBLE: Dropped support for LibreSSL < 3.6.

• Updated the minimum supported Rust version (MSRV) to 1.56.0, from 1.48.0.

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.1.

2.8. Changelog 217

Cryptography Documentation, Release 43.0.0.dev1

• Added support for the OCSPAcceptableResponses OCSP extension.

• Added support for the MSCertificateTemplate proprietary Microsoft certificate extension.

• Implemented support for equality checks on all asymmetric public key types.

• Added support for aes256-gcm@openssh.com encrypted keys in load_ssh_private_key().

• Added support for obtaining X.509 certificate signature algorithm parameters (including PSS) via
signature_algorithm_parameters().

• Support signing PSS X.509 certificates via the new keyword-only argument rsa_padding on sign().

• Added support for ChaCha20Poly1305 on BoringSSL.

2.8.16 40.0.2 - 2023-04-14

• Fixed compilation when using LibreSSL 3.7.2.

• Added some functions to support an upcoming pyOpenSSL release.

2.8.17 40.0.1 - 2023-03-24

• Fixed a bug where certain operations would fail if an object happened to be in the top-half of the memory-space.
This only impacted 32-bit systems.

2.8.18 40.0.0 - 2023-03-24

• BACKWARDS INCOMPATIBLE: As announced in the 39.0.0 changelog, the way cryptography links
OpenSSL has changed. This only impacts users who build cryptography from source (i.e., not from a
wheel), and specify their own version of OpenSSL. For those users, the CFLAGS, LDFLAGS, INCLUDE, LIB,
and CRYPTOGRAPHY_SUPPRESS_LINK_FLAGS environment variables are no longer valid. Instead, users need to
configure their builds as documented here.

• Support for Python 3.6 is deprecated and will be removed in the next release.

• Deprecated the current minimum supported Rust version (MSRV) of 1.48.0. In the next release we will raise
MSRV to 1.56.0. Users with the latest pip will typically get a wheel and not need Rust installed, but check
Installation for documentation on installing a newer rustc if required.

• Deprecated support for OpenSSL less than 1.1.1d. The next release of cryptography will drop support for
older versions.

• Deprecated support for DSA keys in load_ssh_public_key() and load_ssh_private_key().

• Deprecated support for OpenSSH serialization in DSAPublicKey and DSAPrivateKey.

• The minimum supported version of PyPy3 is now 7.3.10.

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.1.0.

• Added support for parsing SSH certificates in addition to public keys with load_ssh_public_identity().
load_ssh_public_key() continues to support only public keys.

• Added support for generating SSH certificates with SSHCertificateBuilder.

• Added verify_directly_issued_by() to Certificate.

• Added a check to NameConstraints to ensure that DNSName constraints do not contain any * wildcards.

218 Chapter 2. Layout

https://docs.rs/openssl/latest/openssl/#automatic

Cryptography Documentation, Release 43.0.0.dev1

• Removed many unused CFFI OpenSSL bindings. This will not impact you unless you are using cryptography
to directly invoke OpenSSL’s C API. Note that these have never been considered a stable, supported, public API
by cryptography, this note is included as a courtesy.

• The X.509 builder classes now raise UnsupportedAlgorithm instead of ValueError if an unsupported hash
algorithm is passed.

• Added public union type aliases for type hinting:

– Asymmetric types: PublicKeyTypes, PrivateKeyTypes, CertificatePublicKeyTypes,
CertificateIssuerPublicKeyTypes, CertificateIssuerPrivateKeyTypes.

– SSH keys: SSHPublicKeyTypes, SSHPrivateKeyTypes, SSHCertPublicKeyTypes,
SSHCertPrivateKeyTypes.

– PKCS12: PKCS12PrivateKeyTypes

– PKCS7: PKCS7HashTypes, PKCS7PrivateKeyTypes.

– Two-factor: HOTPHashTypes

• Deprecated previously undocumented but not private type aliases in the cryptography.hazmat.primitives.
asymmetric.types module in favor of new ones above.

2.8.19 39.0.2 - 2023-03-02

• Fixed a bug where the content type header was not properly encoded for PKCS7 signatures when using the Text
option and SMIME encoding.

2.8.20 39.0.1 - 2023-02-07

• SECURITY ISSUE - Fixed a bug where Cipher.update_into accepted Python buffer protocol objects, but
allowed immutable buffers. CVE-2023-23931

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.0.8.

2.8.21 39.0.0 - 2023-01-01

• BACKWARDS INCOMPATIBLE: Support for OpenSSL 1.1.0 has been removed. Users on older version of
OpenSSL will need to upgrade.

• BACKWARDS INCOMPATIBLE: Dropped support for LibreSSL < 3.5. The new minimum LibreSSL version
is 3.5.0. Going forward our policy is to support versions of LibreSSL that are available in versions of OpenBSD
that are still receiving security support.

• BACKWARDS INCOMPATIBLE: Removed the encode_point and from_encoded_point methods on
EllipticCurvePublicNumbers, which had been deprecated for several years. public_bytes() and
from_encoded_point() should be used instead.

• BACKWARDS INCOMPATIBLE: Support for using MD5 or SHA1 in CertificateBuilder, other X.509
builders, and PKCS7 has been removed.

• BACKWARDS INCOMPATIBLE: Dropped support for macOS 10.10 and 10.11, macOS users must upgrade
to 10.12 or newer.

• ANNOUNCEMENT: The next version of cryptography (40.0) will change the way we link OpenSSL.
This will only impact users who build cryptography from source (i.e., not from a wheel), and
specify their own version of OpenSSL. For those users, the CFLAGS, LDFLAGS, INCLUDE, LIB, and

2.8. Changelog 219

Cryptography Documentation, Release 43.0.0.dev1

CRYPTOGRAPHY_SUPPRESS_LINK_FLAGS environment variables will no longer be respected. Instead, users will
need to configure their builds as documented here.

• Added support for disabling the legacy provider in OpenSSL 3.0.x.

• Added support for disabling RSA key validation checks when loading RSA keys via load_pem_private_key(),
load_der_private_key(), and private_key(). This speeds up key loading but is unsafe if you are loading
potentially attacker supplied keys.

• Significantly improved performance for ChaCha20Poly1305when repeatedly calling encrypt or decryptwith
the same key.

• Added support for creating OCSP requests with precomputed hashes using add_certificate_by_hash().

• Added support for loading multiple PEM-encoded X.509 certificates from a single input via
load_pem_x509_certificates().

2.8.22 38.0.4 - 2022-11-27

• Fixed compilation when using LibreSSL 3.6.0.

• Fixed error when using py2app to build an application with a cryptography dependency.

2.8.23 38.0.3 - 2022-11-01

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.0.7, which resolves CVE-2022-
3602 and CVE-2022-3786.

2.8.24 38.0.2 - 2022-10-11 (YANKED)

Attention: This release was subsequently yanked from PyPI due to a regression in OpenSSL.

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.0.6.

2.8.25 38.0.1 - 2022-09-07

• Fixed parsing TLVs in ASN.1 with length greater than 65535 bytes (typically seen in large CRLs).

2.8.26 38.0.0 - 2022-09-06

• Final deprecation of OpenSSL 1.1.0. The next release of cryptography will drop support.

• We no longer ship manylinux2010 wheels. Users should upgrade to the latest pip to ensure this doesn’t cause
issues downloading wheels on their platform. We now ship manylinux_2_28 wheels for users on new enough
platforms.

• Updated the minimum supported Rust version (MSRV) to 1.48.0, from 1.41.0. Users with the latest pip will
typically get a wheel and not need Rust installed, but check Installation for documentation on installing a newer
rustc if required.

• decrypt() and related methods now accept both str and bytes tokens.

220 Chapter 2. Layout

https://docs.rs/openssl/latest/openssl/#automatic

Cryptography Documentation, Release 43.0.0.dev1

• Parsing CertificateSigningRequest restores the behavior of enforcing that the Extension critical field
must be correctly encoded DER. See the issue for complete details.

• Added two new OpenSSL functions to the bindings to support an upcoming pyOpenSSL release.

• When parsing CertificateRevocationList and CertificateSigningRequest values, it is now enforced
that the version value in the input must be valid according to the rules of RFC 2986 and RFC 5280.

• Using MD5 or SHA1 in CertificateBuilder and other X.509 builders is deprecated and support will be
removed in the next version.

• Added additional APIs to SignedCertificateTimestamp, including signature_hash_algorithm ,
signature_algorithm , signature, and extension_bytes.

• Added tbs_precertificate_bytes, allowing users to access the to-be-signed pre-certificate data needed for
signed certificate timestamp verification.

• KBKDFHMAC and KBKDFCMAC now support MiddleFixed counter location.

• Fixed RFC 4514 name parsing to reverse the order of the RDNs according to the section 2.1 of the RFC, affecting
method from_rfc4514_string().

• It is now possible to customize some aspects of encryption when serializing private keys, using
encryption_builder().

• Removed several legacy symbols from our OpenSSL bindings. Users of pyOpenSSL versions older than 22.0
will need to upgrade.

• Added AES128 and AES256 classes. These classes do not replace AES (which allows all AES key lengths), but
are intended for applications where developers want to be explicit about key length.

2.8.27 37.0.4 - 2022-07-05

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.0.5.

2.8.28 37.0.3 - 2022-06-21 (YANKED)

Attention: This release was subsequently yanked from PyPI due to a regression in OpenSSL.

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.0.4.

2.8.29 37.0.2 - 2022-05-03

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.0.3.

• Added a constant needed for an upcoming pyOpenSSL release.

2.8. Changelog 221

https://github.com/pyca/cryptography/issues/6368
https://datatracker.ietf.org/doc/html/rfc2986.html
https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc4514.html

Cryptography Documentation, Release 43.0.0.dev1

2.8.30 37.0.1 - 2022-04-27

• Fixed an issue where parsing an encrypted private key with the public loader functions would hang waiting for
console input on OpenSSL 3.0.x rather than raising an error.

• Restored some legacy symbols for older pyOpenSSL users. These will be removed again in the future, so
pyOpenSSL users should still upgrade to the latest version of that package when they upgrade cryptography.

2.8.31 37.0.0 - 2022-04-26

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 3.0.2.

• BACKWARDS INCOMPATIBLE: Dropped support for LibreSSL 2.9.x and 3.0.x. The new minimum Li-
breSSL version is 3.1+.

• BACKWARDS INCOMPATIBLE: Removed signer and verifier methods from the public key and private
key classes. These methods were originally deprecated in version 2.0, but had an extended deprecation timeline
due to usage. Any remaining users should transition to sign and verify.

• Deprecated OpenSSL 1.1.0 support. OpenSSL 1.1.0 is no longer supported by the OpenSSL project. The next
release of cryptography will be the last to support compiling with OpenSSL 1.1.0.

• Deprecated Python 3.6 support. Python 3.6 is no longer supported by the Python core team. Support for Python
3.6 will be removed in a future cryptography release.

• Deprecated the current minimum supported Rust version (MSRV) of 1.41.0. In the next release we will raise
MSRV to 1.48.0. Users with the latest pip will typically get a wheel and not need Rust installed, but check
Installation for documentation on installing a newer rustc if required.

• Deprecated CAST5, SEED, IDEA , and Blowfish because they are legacy algorithms with extremely low usage.
These will be removed in a future version of cryptography.

• Added limited support for distinguished names containing a bit string.

• We now ship universal2 wheels on macOS, which contain both arm64 and x86_64 architectures. Users on
macOS should upgrade to the latest pip to ensure they can use this wheel, although we will continue to ship
x86_64 specific wheels for now to ease the transition.

• This will be the final release for which we ship manylinux2010 wheels. Going forward the minimum sup-
ported manylinux ABI for our wheels will be manylinux2014. The vast majority of users will continue to
receive manylinux wheels provided they have an up to date pip. For PyPy wheels this release already requires
manylinux2014 for compatibility with binaries distributed by upstream.

• Added support for multiple OCSPSingleResponse in a OCSPResponse.

• Restored support for signing certificates and other structures in X.509 with SHA3 hash algorithms.

• TripleDES is disabled in FIPS mode.

• Added support for serialization of PKCS#12 CA friendly names/aliases in
serialize_key_and_certificates()

• Added support for 12-15 byte (96 to 120 bit) nonces to AESOCB3. This class previously supported only 12 byte
(96 bit).

• Added support for AESSIV when using OpenSSL 3.0.0+.

• Added support for serializing PKCS7 structures from a list of certificates with serialize_certificates.

• Added support for parsing RFC 4514 strings with from_rfc4514_string().

• Added AUTO to PSS. This can be used to verify a signature where the salt length is not already known.

222 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc4514.html

Cryptography Documentation, Release 43.0.0.dev1

• Added DIGEST_LENGTH to PSS. This constant will set the salt length to the same length as the PSS hash algorithm.

• Added support for loading RSA-PSS key types with load_pem_private_key() and
load_der_private_key(). This functionality is limited to OpenSSL 1.1.1e+ and loads the key as a
normal RSA private key, discarding the PSS constraint information.

2.8.32 36.0.2 - 2022-03-15

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 1.1.1n.

2.8.33 36.0.1 - 2021-12-14

• Updated Windows, macOS, and Linux wheels to be compiled with OpenSSL 1.1.1m.

2.8.34 36.0.0 - 2021-11-21

• FINAL DEPRECATION Support for verifier and signer on our asymmetric key classes was depre-
cated in version 2.0. These functions had an extended deprecation due to usage, however the next version of
cryptography will drop support. Users should migrate to sign and verify.

• The entire X.509 layer is now written in Rust. This allows alternate asymmetric key implementations that can
support cloud key management services or hardware security modules provided they implement the necessary
interface (for example: EllipticCurvePrivateKey).

• Deprecated the backend argument for all functions.

• Added support for AESOCB3.

• Added support for iterating over arbitrary request attributes.

• Deprecated the get_attribute_for_oid method on CertificateSigningRequest in favor of
get_attribute_for_oid() on the new Attributes object.

• Fixed handling of PEM files to allow loading when certificate and key are in the same file.

• Fixed parsing of CertificatePolicies extensions containing legacy BMPString values in their
explicitText.

• Allow parsing of negative serial numbers in certificates. Negative serial numbers are prohibited by RFC 5280
so a deprecation warning will be raised whenever they are encountered. A future version of cryptography will
drop support for parsing them.

• Added support for parsing PKCS12 files with friendly names for all certificates with load_pkcs12(), which
will return an object of type PKCS12KeyAndCertificates.

• rfc4514_string() and related methods now have an optional attr_name_overrides parameter to supply
custom OID to name mappings, which can be used to match vendor-specific extensions.

• BACKWARDS INCOMPATIBLE: Reverted the nonstandard formatting of email address fields as E in
rfc4514_string() methods from version 35.0.

The previous behavior can be restored with: name.rfc4514_string({NameOID.EMAIL_ADDRESS: "E"})

• Allow X25519PublicKey and X448PublicKey to be used as public keys when parsing certificates or creating
them with CertificateBuilder. These key types must be signed with a different signing algorithm as X25519
and X448 do not support signing.

• Extension values can now be serialized to a DER byte string by calling public_bytes().

2.8. Changelog 223

https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

• Added experimental support for compiling against BoringSSL. As BoringSSL does not commit to a stable API,
cryptography tests against the latest commit only. Please note that several features are not available when
building against BoringSSL.

• Parsing CertificateSigningRequest from DER and PEM now, for a limited time period, allows the
Extension critical field to be incorrectly encoded. See the issue for complete details. This will be reverted
in a future cryptography release.

• When OCSPNonce are parsed and generated their value is now correctly wrapped in an ASN.1 OCTET STRING.
This conforms to RFC 6960 but conflicts with the original behavior specified in RFC 2560. For a temporary
period for backwards compatibility, we will also parse values that are encoded as specified in RFC 2560 but this
behavior will be removed in a future release.

2.8.35 35.0.0 - 2021-09-29

• Changed the version scheme. This will result in us incrementing the major version more frequently, but does not
change our existing backwards compatibility policy.

• BACKWARDS INCOMPATIBLE: The X.509 PEM parsers now require that the PEM string passed have PEM
delimiters of the correct type. For example, parsing a private key PEM concatenated with a certificate PEM will
no longer be accepted by the PEM certificate parser.

• BACKWARDS INCOMPATIBLE: The X.509 certificate parser no longer allows negative serial numbers. RFC
5280 has always prohibited these.

• BACKWARDS INCOMPATIBLE: Additional forms of invalid ASN.1 found during X.509 parsing will raise
an error on initial parse rather than when the malformed field is accessed.

• Rust is now required for building cryptography, the CRYPTOGRAPHY_DONT_BUILD_RUST environment variable
is no longer respected.

• Parsers for X.509 no longer use OpenSSL and have been rewritten in Rust. This should be backwards compatible
(modulo the items listed above) and improve both security and performance.

• Added support for OpenSSL 3.0.0 as a compilation target.

• Added support for SM3 and SM4, when using OpenSSL 1.1.1. These algorithms are provided for compatibility
in regions where they may be required, and are not generally recommended.

• We now ship manylinux_2_24 and musllinux_1_1 wheels, in addition to our manylinux2010 and
manylinux2014 wheels. Users on distributions like Alpine Linux should ensure they upgrade to the latest
pip to correctly receive wheels.

• Added rfc4514_attribute_name attribute to x509.NameAttribute.

• Added KBKDFCMAC.

2.8.36 3.4.8 - 2021-08-24

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1l.

224 Chapter 2. Layout

https://github.com/pyca/cryptography/issues/6368
https://datatracker.ietf.org/doc/html/rfc6960.html
https://datatracker.ietf.org/doc/html/rfc2560.html
https://datatracker.ietf.org/doc/html/rfc2560.html
https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

2.8.37 3.4.7 - 2021-03-25

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1k.

2.8.38 3.4.6 - 2021-02-16

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1j.

2.8.39 3.4.5 - 2021-02-13

• Various improvements to type hints.

• Lower the minimum supported Rust version (MSRV) to >=1.41.0. This change improves compatibility with
system-provided Rust on several Linux distributions.

• cryptography will be switching to a new versioning scheme with its next feature release. More information is
available in our API stability documentation.

2.8.40 3.4.4 - 2021-02-09

• Added a py.typed file so that mypy will know to use our type annotations.

• Fixed an import cycle that could be triggered by certain import sequences.

2.8.41 3.4.3 - 2021-02-08

• Specify our supported Rust version (>=1.45.0) in our setup.py so users on older versions will get a clear error
message.

2.8.42 3.4.2 - 2021-02-08

• Improvements to make the rust transition a bit easier. This includes some better error messages and small de-
pendency fixes. If you experience installation problems Be sure to update pip first, then check the FAQ.

2.8.43 3.4.1 - 2021-02-07

• Fixed a circular import issue.

• Added additional debug output to assist users seeing installation errors due to outdated pip or missing rustc.

2.8.44 3.4 - 2021-02-07

• BACKWARDS INCOMPATIBLE: Support for Python 2 has been removed.

• We now ship manylinux2014 wheels and no longer ship manylinux1 wheels. Users should upgrade to the
latest pip to ensure this doesn’t cause issues downloading wheels on their platform.

• cryptography now incorporates Rust code. Users building cryptography themselves will need to have the
Rust toolchain installed. Users who use an officially produced wheel will not need to make any changes. The
minimum supported Rust version is 1.45.0.

2.8. Changelog 225

Cryptography Documentation, Release 43.0.0.dev1

• cryptography now has PEP 484 type hints on nearly all of of its public APIs. Users can begin using them to
type check their code with mypy.

2.8.45 3.3.2 - 2021-02-07

• SECURITY ISSUE: Fixed a bug where certain sequences of update() calls when symmetrically encrypting
very large payloads (>2GB) could result in an integer overflow, leading to buffer overflows. CVE-2020-36242
Update: This fix is a workaround for CVE-2021-23840 in OpenSSL, fixed in OpenSSL 1.1.1j.

2.8.46 3.3.1 - 2020-12-09

• Re-added a legacy symbol causing problems for older pyOpenSSL users.

2.8.47 3.3 - 2020-12-08

• BACKWARDS INCOMPATIBLE: Support for Python 3.5 has been removed due to low usage and maintenance
burden.

• BACKWARDS INCOMPATIBLE: The GCM and AESGCM now require 64-bit to 1024-bit (8 byte to 128 byte)
initialization vectors. This change is to conform with an upcoming OpenSSL release that will no longer support
sizes outside this window.

• BACKWARDS INCOMPATIBLE: When deserializing asymmetric keys we now raise ValueError rather than
UnsupportedAlgorithm when an unsupported cipher is used. This change is to conform with an upcoming
OpenSSL release that will no longer distinguish between error types.

• BACKWARDS INCOMPATIBLE: We no longer allow loading of finite field Diffie-Hellman parameters of less
than 512 bits in length. This change is to conform with an upcoming OpenSSL release that no longer supports
smaller sizes. These keys were already wildly insecure and should not have been used in any application outside
of testing.

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1i.

• Python 2 support is deprecated in cryptography. This is the last release that will support Python 2.

• Added the recover_data_from_signature() function to RSAPublicKey for recovering the signed data from
an RSA signature.

2.8.48 3.2.1 - 2020-10-27

• Disable blinding on RSA public keys to address an error with some versions of OpenSSL.

2.8.49 3.2 - 2020-10-25

• SECURITY ISSUE: Attempted to make RSA PKCS#1v1.5 decryption more constant time, to protect against
Bleichenbacher vulnerabilities. Due to limitations imposed by our API, we cannot completely mitigate this
vulnerability and a future release will contain a new API which is designed to be resilient to these for contexts
where it is required. Credit to Hubert Kario for reporting the issue. CVE-2020-25659

• Support for OpenSSL 1.0.2 has been removed. Users on older version of OpenSSL will need to upgrade.

• Added basic support for PKCS7 signing (including SMIME) via PKCS7SignatureBuilder.

226 Chapter 2. Layout

https://peps.python.org/pep-0484/

Cryptography Documentation, Release 43.0.0.dev1

2.8.50 3.1.1 - 2020-09-22

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1h.

2.8.51 3.1 - 2020-08-26

• BACKWARDS INCOMPATIBLE: Removed support for idna based U-label parsing in various X.509 classes.
This support was originally deprecated in version 2.1 and moved to an extra in 2.5.

• Deprecated OpenSSL 1.0.2 support. OpenSSL 1.0.2 is no longer supported by the OpenSSL project. The next
version of cryptography will drop support for it.

• Deprecated support for Python 3.5. This version sees very little use and will be removed in the next release.

• backend arguments to functions are no longer required and the default backend will automatically be selected if
no backend is provided.

• Added initial support for parsing certificates from PKCS7 files with load_pem_pkcs7_certificates() and
load_der_pkcs7_certificates() .

• Calling update or update_into on CipherContext with data longer than 231 bytes no longer raises an
OverflowError. This also resolves the same issue in Fernet (symmetric encryption).

2.8.52 3.0 - 2020-07-20

• BACKWARDS INCOMPATIBLE: Removed support for passing an Extension instance to
from_issuer_subject_key_identifier(), as per our deprecation policy.

• BACKWARDS INCOMPATIBLE: Support for LibreSSL 2.7.x, 2.8.x, and 2.9.0 has been removed (2.9.1+ is
still supported).

• BACKWARDS INCOMPATIBLE: Dropped support for macOS 10.9, macOS users must upgrade to 10.10 or
newer.

• BACKWARDS INCOMPATIBLE: RSA generate_private_key() no longer accepts public_exponent
values except 65537 and 3 (the latter for legacy purposes).

• BACKWARDS INCOMPATIBLE: X.509 certificate parsing now enforces that the version field contains a
valid value, rather than deferring this check until version is accessed.

• Deprecated support for Python 2. At the time there is no time table for actually dropping support, however we
strongly encourage all users to upgrade their Python, as Python 2 no longer receives support from the Python
core team.

If you have trouble suppressing this warning in tests view the FAQ entry addressing this issue.

• Added support for OpenSSH serialization format for ec, ed25519, rsa and dsa private keys:
load_ssh_private_key() for loading and OpenSSH for writing.

• Added support for OpenSSH certificates to load_ssh_public_key().

• Added encrypt_at_time() and decrypt_at_time() to Fernet.

• Added support for the SubjectInformationAccess X.509 extension.

• Added support for parsing SignedCertificateTimestamps in OCSP responses.

• Added support for parsing attributes in certificate signing requests via CertificateSigningRequest.
get_attribute_for_oid.

• Added support for encoding attributes in certificate signing requests via add_attribute().

2.8. Changelog 227

Cryptography Documentation, Release 43.0.0.dev1

• On OpenSSL 1.1.1d and higher cryptography now uses OpenSSL’s built-in CSPRNG instead of its own OS
random engine because these versions of OpenSSL properly reseed on fork.

• Added initial support for creating PKCS12 files with serialize_key_and_certificates().

2.8.53 2.9.2 - 2020-04-22

• Updated the macOS wheel to fix an issue where it would not run on macOS versions older than 10.15.

2.8.54 2.9.1 - 2020-04-21

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1g.

2.8.55 2.9 - 2020-04-02

• BACKWARDS INCOMPATIBLE: Support for Python 3.4 has been removed due to low usage and maintenance
burden.

• BACKWARDS INCOMPATIBLE: Support for OpenSSL 1.0.1 has been removed. Users on older version of
OpenSSL will need to upgrade.

• BACKWARDS INCOMPATIBLE: Support for LibreSSL 2.6.x has been removed.

• Removed support for calling public_bytes()with no arguments, as per our deprecation policy. You must now
pass encoding and format.

• BACKWARDS INCOMPATIBLE: Reversed the order in which rfc4514_string() returns the RDNs as
required by RFC 4514.

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1f.

• Added support for parsing single_extensions in an OCSP response.

• NameAttribute values can now be empty strings.

2.8.56 2.8 - 2019-10-16

• Updated Windows, macOS, and manylinux wheels to be compiled with OpenSSL 1.1.1d.

• Added support for Python 3.8.

• Added class methods Poly1305.generate_tag and Poly1305.verify_tag for Poly1305 sign and verify
operations.

• Deprecated support for OpenSSL 1.0.1. Support will be removed in cryptography 2.9.

• We now ship manylinux2010 wheels in addition to our manylinux1 wheels.

• Added support for ed25519 and ed448 keys in the CertificateBuilder,
CertificateSigningRequestBuilder, CertificateRevocationListBuilder and
OCSPResponseBuilder.

• cryptography no longer depends on asn1crypto.

• FreshestCRL is now allowed as a CertificateRevocationList extension.

228 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc4514.html

Cryptography Documentation, Release 43.0.0.dev1

2.8.57 2.7 - 2019-05-30

• BACKWARDS INCOMPATIBLE: We no longer distribute 32-bit manylinux1wheels. Continuing to produce
them was a maintenance burden.

• BACKWARDS INCOMPATIBLE: Removed the cryptography.hazmat.primitives.mac.MACContext
interface. The CMAC and HMACAPIs have not changed, but they are no longer registered as MACContext instances.

• Updated Windows, macOS, and manylinux1 wheels to be compiled with OpenSSL 1.1.1c.

• Removed support for running our tests with setup.py test. Users interested in running our tests can continue
to follow the directions in our development documentation.

• Add support for Poly1305 when using OpenSSL 1.1.1 or newer.

• Support serialization with Encoding.OpenSSH and PublicFormat.OpenSSH in Ed25519PublicKey.
public_bytes .

• Correctly allow passing a SubjectKeyIdentifier to from_issuer_subject_key_identifier() and dep-
recate passing an Extension object. The documentation always required SubjectKeyIdentifier but the
implementation previously required an Extension.

2.8.58 2.6.1 - 2019-02-27

• Resolved an error in our build infrastructure that broke our Python3 wheels for macOS and Linux.

2.8.59 2.6 - 2019-02-27

• BACKWARDS INCOMPATIBLE: Removed cryptography.hazmat.primitives.asymmetric.
utils.encode_rfc6979_signature and cryptography.hazmat.primitives.asymmetric.utils.
decode_rfc6979_signature, which had been deprecated for nearly 4 years. Use encode_dss_signature()
and decode_dss_signature() instead.

• BACKWARDS INCOMPATIBLE: Removed cryptography.x509.Certificate.serial, which had been
deprecated for nearly 3 years. Use serial_number instead.

• Updated Windows, macOS, and manylinux1 wheels to be compiled with OpenSSL 1.1.1b.

• Added support for Ed448 signing when using OpenSSL 1.1.1b or newer.

• Added support for Ed25519 signing when using OpenSSL 1.1.1b or newer.

• load_ssh_public_key() can now load ed25519 public keys.

• Add support for easily mapping an object identifier to its elliptic curve class via get_curve_for_oid().

• Add support for OpenSSL when compiled with the no-engine (OPENSSL_NO_ENGINE) flag.

2.8.60 2.5 - 2019-01-22

• BACKWARDS INCOMPATIBLE: U-label strings were deprecated in version 2.1, but this version removes
the default idna dependency as well. If you still need this deprecated path please install cryptography with the
idna extra: pip install cryptography[idna].

• BACKWARDS INCOMPATIBLE: The minimum supported PyPy version is now 5.4.

• Numerous classes and functions have been updated to allow bytes-like types for keying material and pass-
words, including symmetric algorithms, AEAD ciphers, KDFs, loading asymmetric keys, and one time password
classes.

2.8. Changelog 229

Cryptography Documentation, Release 43.0.0.dev1

• Updated Windows, macOS, and manylinux1 wheels to be compiled with OpenSSL 1.1.1a.

• Added support for SHA512_224 and SHA512_256 when using OpenSSL 1.1.1.

• Added support for SHA3_224, SHA3_256, SHA3_384, and SHA3_512 when using OpenSSL 1.1.1.

• Added support for X448 key exchange when using OpenSSL 1.1.1.

• Added support for SHAKE128 and SHAKE256 when using OpenSSL 1.1.1.

• Added initial support for parsing PKCS12 files with load_key_and_certificates().

• Added support for IssuingDistributionPoint.

• Added rfc4514_string() method to x509.Name, x509.RelativeDistinguishedName, and x509.
NameAttribute to format the name or component an RFC 4514 Distinguished Name string.

• Added from_encoded_point(), which immediately checks if the point is on the curve and supports com-
pressed points. Deprecated the previous method cryptography.hazmat.primitives.asymmetric.ec.
EllipticCurvePublicNumbers.from_encoded_point.

• Added signature_hash_algorithm to OCSPResponse.

• Updated X25519 key exchange support to allow additional serialization methods. Calling public_bytes()with
no arguments has been deprecated.

• Added support for encoding compressed and uncompressed points via public_bytes(). Deprecated the pre-
vious method cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers.
encode_point.

2.8.61 2.4.2 - 2018-11-21

• Updated Windows, macOS, and manylinux1 wheels to be compiled with OpenSSL 1.1.0j.

2.8.62 2.4.1 - 2018-11-11

• Fixed a build breakage in our manylinux1 wheels.

2.8.63 2.4 - 2018-11-11

• BACKWARDS INCOMPATIBLE: Dropped support for LibreSSL 2.4.x.

• Deprecated OpenSSL 1.0.1 support. OpenSSL 1.0.1 is no longer supported by the OpenSSL project. At this
time there is no time table for dropping support, however we strongly encourage all users to upgrade or install
cryptography from a wheel.

• Added initial OCSP support.

• Added support for PrecertPoison.

230 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc4514.html

Cryptography Documentation, Release 43.0.0.dev1

2.8.64 2.3.1 - 2018-08-14

• Updated Windows, macOS, and manylinux1 wheels to be compiled with OpenSSL 1.1.0i.

2.8.65 2.3 - 2018-07-18

• SECURITY ISSUE: finalize_with_tag() allowed tag truncation by default which can allow tag forgery in
some cases. The method now enforces the min_tag_length provided to the GCM constructor. CVE-2018-10903

• Added support for Python 3.7.

• Added extract_timestamp() to get the authenticated timestamp of a Fernet token.

• Support for Python 2.7.x without hmac.compare_digest has been deprecated. We will require Python 2.7.7
or higher (or 2.7.6 on Ubuntu) in the next cryptography release.

• Fixed multiple issues preventing cryptography from compiling against LibreSSL 2.7.x.

• Added get_revoked_certificate_by_serial_number for quick serial number searches in CRLs.

• The RelativeDistinguishedName class now preserves the order of attributes. Duplicate attributes now raise
an error instead of silently discarding duplicates.

• aes_key_unwrap() and aes_key_unwrap_with_padding() now raise InvalidUnwrap if the wrapped key
is an invalid length, instead of ValueError.

2.8.66 2.2.2 - 2018-03-27

• Updated Windows, macOS, and manylinux1 wheels to be compiled with OpenSSL 1.1.0h.

2.8.67 2.2.1 - 2018-03-20

• Reverted a change to GeneralNames which prohibited having zero elements, due to breakages.

• Fixed a bug in aes_key_unwrap_with_padding() that caused it to raise InvalidUnwrap when key length
modulo 8 was zero.

2.8.68 2.2 - 2018-03-19

• BACKWARDS INCOMPATIBLE: Support for Python 2.6 has been dropped.

• Resolved a bug in HKDF that incorrectly constrained output size.

• Added BrainpoolP256R1, BrainpoolP384R1, and BrainpoolP512R1 to support inter-operating with systems
like German smart meters.

• Added token rotation support to Fernet with rotate().

• Fixed a memory leak in derive_private_key().

• Added support for AES key wrapping with padding via aes_key_wrap_with_padding() and
aes_key_unwrap_with_padding() .

• Allow loading DSA keys with 224 bit q.

2.8. Changelog 231

Cryptography Documentation, Release 43.0.0.dev1

2.8.69 2.1.4 - 2017-11-29

• Added X509_up_ref for an upcoming pyOpenSSL release.

2.8.70 2.1.3 - 2017-11-02

• Updated Windows, macOS, and manylinux1 wheels to be compiled with OpenSSL 1.1.0g.

2.8.71 2.1.2 - 2017-10-24

• Corrected a bug with the manylinux1 wheels where OpenSSL’s stack was marked executable.

2.8.72 2.1.1 - 2017-10-12

• Fixed support for install with the system pip on Ubuntu 16.04.

2.8.73 2.1 - 2017-10-11

• FINAL DEPRECATION Python 2.6 support is deprecated, and will be removed in the next release of
cryptography.

• BACKWARDS INCOMPATIBLE: Whirlpool, RIPEMD160, and UnsupportedExtension have been re-
moved in accordance with our API stability policy.

• BACKWARDS INCOMPATIBLE: DNSName.value, RFC822Name.value, and
UniformResourceIdentifier.value will now return an A-label string when parsing a certificate con-
taining an internationalized domain name (IDN) or if the caller passed a U-label to the constructor. See below
for additional deprecations related to this change.

• Installing cryptography now requires pip 6 or newer.

• Deprecated passing U-label strings to the DNSName, UniformResourceIdentifier, and RFC822Name con-
structors. Instead, users should pass values as A-label strings with idna encoding if necessary. This change will
not affect anyone who is not processing internationalized domains.

• Added support for ChaCha20. In most cases users should choose ChaCha20Poly1305 rather than using this
unauthenticated form.

• Added is_signature_valid() to CertificateRevocationList.

• Support BLAKE2b and BLAKE2s with HMAC.

• Added support for XTS mode for AES.

• Added support for using labels with OAEP when using OpenSSL 1.0.2 or greater.

• Improved compatibility with NSS when issuing certificates from an issuer that has a subject with non-
UTF8String string types.

• Add support for the DeltaCRLIndicator extension.

• Add support for the TLSFeature extension. This is commonly used for enabling OCSP Must-Staple in cer-
tificates.

• Add support for the FreshestCRL extension.

232 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

2.8.74 2.0.3 - 2017-08-03

• Fixed an issue with weak linking symbols when compiling on macOS versions older than 10.12.

2.8.75 2.0.2 - 2017-07-27

• Marked all symbols as hidden in the manylinux1 wheel to avoid a bug with symbol resolution in certain sce-
narios.

2.8.76 2.0.1 - 2017-07-26

• Fixed a compilation bug affecting OpenBSD.

• Altered the manylinux1 wheels to statically link OpenSSL instead of dynamically linking and bundling the
shared object. This should resolve crashes seen when using uwsgi or other binaries that link against OpenSSL
independently.

• Fixed the stack level for the signer and verifier warnings.

2.8.77 2.0 - 2017-07-17

• BACKWARDS INCOMPATIBLE: Support for Python 3.3 has been dropped.

• We now ship manylinux1 wheels linked against OpenSSL 1.1.0f. These wheels will be automatically used with
most Linux distributions if you are running the latest pip.

• Deprecated the use of signer on RSAPrivateKey, DSAPrivateKey, and EllipticCurvePrivateKey in
favor of sign.

• Deprecated the use of verifier on RSAPublicKey, DSAPublicKey, and EllipticCurvePublicKey in favor
of verify.

• Added support for parsing SignedCertificateTimestamp objects from X.509 certificate extensions.

• Added support for ChaCha20Poly1305.

• Added support for AESCCM .

• Added AESGCM , a “one shot” API for AES GCM encryption.

• Added support for X25519 key exchange.

• Added support for serializing and deserializing Diffie-Hellman parameters with load_pem_parameters(),
load_der_parameters(), and parameter_bytes() .

• The extensions attribute on Certificate, CertificateSigningRequest,
CertificateRevocationList, and RevokedCertificate now caches the computed Extensions ob-
ject. There should be no performance change, just a performance improvement for programs accessing the
extensions attribute multiple times.

2.8. Changelog 233

Cryptography Documentation, Release 43.0.0.dev1

2.8.78 1.9 - 2017-05-29

• BACKWARDS INCOMPATIBLE: Elliptic Curve signature verification no longer returns True on success.
This brings it in line with the interface’s documentation, and our intent. The correct way to use verify() has
always been to check whether or not InvalidSignature was raised.

• BACKWARDS INCOMPATIBLE: Dropped support for macOS 10.7 and 10.8.

• BACKWARDS INCOMPATIBLE: The minimum supported PyPy version is now 5.3.

• Python 3.3 support has been deprecated, and will be removed in the next cryptography release.

• Add support for providing tag during GCM finalization via finalize_with_tag().

• Fixed an issue preventing cryptography from compiling against LibreSSL 2.5.x.

• Added key_size() and key_size() as convenience methods for determining the bit size of a secret scalar for
the curve.

• Accessing an unrecognized extension marked critical on an X.509 object will no longer raise an
UnsupportedExtension exception, instead an UnrecognizedExtension object will be returned. This behav-
ior was based on a poor reading of the RFC, unknown critical extensions only need to be rejected on certificate
verification.

• The CommonCrypto backend has been removed.

• MultiBackend has been removed.

• Whirlpool and RIPEMD160 have been deprecated.

2.8.79 1.8.2 - 2017-05-26

• Fixed a compilation bug affecting OpenSSL 1.1.0f.

• Updated Windows and macOS wheels to be compiled against OpenSSL 1.1.0f.

2.8.80 1.8.1 - 2017-03-10

• Fixed macOS wheels to properly link against 1.1.0 rather than 1.0.2.

2.8.81 1.8 - 2017-03-09

• Added support for Python 3.6.

• Windows and macOS wheels now link against OpenSSL 1.1.0.

• macOS wheels are no longer universal. This change significantly shrinks the size of the wheels. Users on macOS
32-bit Python (if there are any) should migrate to 64-bit or build their own packages.

• Changed ASN.1 dependency from pyasn1 to asn1crypto resulting in a general performance increase when
encoding/decoding ASN.1 structures. Also, the pyasn1_modules test dependency is no longer required.

• Added support for update_into() on CipherContext.

• Added private_bytes() to DHPrivateKey.

• Added public_bytes() to DHPublicKey.

• load_pem_private_key() and load_der_private_key() now require that password must be bytes if pro-
vided. Previously this was documented but not enforced.

234 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

• Added support for subgroup order in Diffie-Hellman key exchange.

2.8.82 1.7.2 - 2017-01-27

• Updated Windows and macOS wheels to be compiled against OpenSSL 1.0.2k.

2.8.83 1.7.1 - 2016-12-13

• Fixed a regression in int_from_bytes where it failed to accept bytearray.

2.8.84 1.7 - 2016-12-12

• Support for OpenSSL 1.0.0 has been removed. Users on older version of OpenSSL will need to upgrade.

• Added support for Diffie-Hellman key exchange using exchange().

• The OS random engine for OpenSSL has been rewritten to improve compatibility with embedded Python and
other edge cases. More information about this change can be found in the pull request.

2.8.85 1.6 - 2016-11-22

• Deprecated support for OpenSSL 1.0.0. Support will be removed in cryptography 1.7.

• Replaced the Python-based OpenSSL locking callbacks with a C version to fix a potential deadlock that could
occur if a garbage collection cycle occurred while inside the lock.

• Added support for BLAKE2b and BLAKE2s when using OpenSSL 1.1.0.

• Added signature_algorithm_oid support to Certificate.

• Added signature_algorithm_oid support to CertificateSigningRequest.

• Added signature_algorithm_oid support to CertificateRevocationList.

• Added support for Scrypt when using OpenSSL 1.1.0.

• Added a workaround to improve compatibility with Python application bundling tools like PyInstaller and
cx_freeze.

• Added support for generating a random_serial_number().

• Added support for encoding IPv4Network and IPv6Network in X.509 certificates for use with
NameConstraints.

• Added public_bytes() to Name.

• Added RelativeDistinguishedName

• DistributionPoint now accepts RelativeDistinguishedName for relative_name. Deprecated use of
Name as relative_name.

• Name now accepts an iterable of RelativeDistinguishedName. RDNs can be accessed via the rdns attribute.
When constructed with an iterable of NameAttribute, each attribute becomes a single-valued RDN.

• Added derive_private_key().

• Added support for signing and verifying RSA, DSA, and ECDSA signatures with Prehashed digests.

2.8. Changelog 235

https://github.com/pyca/cryptography/pull/3229

Cryptography Documentation, Release 43.0.0.dev1

2.8.86 1.5.3 - 2016-11-05

• SECURITY ISSUE: Fixed a bug where HKDF would return an empty byte-string if used with a length less than
algorithm.digest_size. Credit to Markus Döring for reporting the issue. CVE-2016-9243

2.8.87 1.5.2 - 2016-09-26

• Updated Windows and OS X wheels to be compiled against OpenSSL 1.0.2j.

2.8.88 1.5.1 - 2016-09-22

• Updated Windows and OS X wheels to be compiled against OpenSSL 1.0.2i.

• Resolved a UserWarning when used with cffi 1.8.3.

• Fixed a memory leak in name creation with X.509.

• Added a workaround for old versions of setuptools.

• Fixed an issue preventing cryptography from compiling against OpenSSL 1.0.2i.

2.8.89 1.5 - 2016-08-26

• Added calculate_max_pss_salt_length().

• Added “one shot” sign() and verify() methods to DSA keys.

• Added “one shot” sign() and verify() methods to ECDSA keys.

• Switched back to the older callback model on Python 3.5 in order to mitigate the locking callback problem with
OpenSSL <1.1.0.

• CertificateBuilder, CertificateRevocationListBuilder, and RevokedCertificateBuilder now
accept timezone aware datetime objects as method arguments

• cryptography now supports OpenSSL 1.1.0 as a compilation target.

2.8.90 1.4 - 2016-06-04

• Support for OpenSSL 0.9.8 has been removed. Users on older versions of OpenSSL will need to upgrade.

• Added KBKDFHMAC.

• Added support for OpenSSH public key serialization.

• Added support for SHA-2 in RSA OAEP when using OpenSSL 1.0.2 or greater.

• Added “one shot” sign() and verify() methods to RSA keys.

• Deprecated the serial attribute on Certificate, in favor of serial_number.

236 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

2.8.91 1.3.4 - 2016-06-03

• Added another OpenSSL function to the bindings to support an upcoming pyOpenSSL release.

2.8.92 1.3.3 - 2016-06-02

• Added two new OpenSSL functions to the bindings to support an upcoming pyOpenSSL release.

2.8.93 1.3.2 - 2016-05-04

• Updated Windows and OS X wheels to be compiled against OpenSSL 1.0.2h.

• Fixed an issue preventing cryptography from compiling against LibreSSL 2.3.x.

2.8.94 1.3.1 - 2016-03-21

• Fixed a bug that caused an AttributeError when using mock to patch some cryptography modules.

2.8.95 1.3 - 2016-03-18

• Added support for padding ANSI X.923 with ANSIX923.

• Deprecated support for OpenSSL 0.9.8. Support will be removed in cryptography 1.4.

• Added support for the PolicyConstraints X.509 extension including both parsing and generation using
CertificateBuilder and CertificateSigningRequestBuilder.

• Added is_signature_valid to CertificateSigningRequest.

• Fixed an intermittent AssertionError when performing an RSA decryption on an invalid ciphertext,
ValueError is now correctly raised in all cases.

• Added from_issuer_subject_key_identifier().

2.8.96 1.2.3 - 2016-03-01

• Updated Windows and OS X wheels to be compiled against OpenSSL 1.0.2g.

2.8.97 1.2.2 - 2016-01-29

• Updated Windows and OS X wheels to be compiled against OpenSSL 1.0.2f.

2.8. Changelog 237

Cryptography Documentation, Release 43.0.0.dev1

2.8.98 1.2.1 - 2016-01-08

• Reverts a change to an OpenSSL EVP_PKEY object that caused errors with pyOpenSSL.

2.8.99 1.2 - 2016-01-08

• BACKWARDS INCOMPATIBLE: RevokedCertificate extensions now uses extension classes rather
than returning raw values inside the Extension value. The new classes are:

– CertificateIssuer

– CRLReason

– InvalidityDate

• Deprecated support for OpenSSL 0.9.8 and 1.0.0. At this time there is no time table for actually dropping sup-
port, however we strongly encourage all users to upgrade, as those versions no longer receive support from the
OpenSSL project.

• The Certificate class now has signature and tbs_certificate_bytes attributes.

• The CertificateSigningRequest class now has signature and tbs_certrequest_bytes attributes.

• The CertificateRevocationList class now has signature and tbs_certlist_bytes attributes.

• NameConstraints are now supported in the CertificateBuilder and
CertificateSigningRequestBuilder.

• Support serialization of certificate revocation lists using the public_bytes() method of
CertificateRevocationList.

• Add support for parsing CertificateRevocationList extensions() in the OpenSSL backend. The follow-
ing extensions are currently supported:

– AuthorityInformationAccess

– AuthorityKeyIdentifier

– CRLNumber

– IssuerAlternativeName

• Added CertificateRevocationListBuilder and RevokedCertificateBuilder to allow creation of
CRLs.

• Unrecognized non-critical X.509 extensions are now parsed into an UnrecognizedExtension object.

2.8.100 1.1.2 - 2015-12-10

• Fixed a SIGBUS crash with the OS X wheels caused by redefinition of a method.

• Fixed a runtime error undefined symbol EC_GFp_nistp224_method that occurred with some OpenSSL in-
stallations.

• Updated Windows and OS X wheels to be compiled against OpenSSL 1.0.2e.

238 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

2.8.101 1.1.1 - 2015-11-19

• Fixed several small bugs related to compiling the OpenSSL bindings with unusual OpenSSL configurations.

• Resolved an issue where, depending on the method of installation and which Python interpreter they were using,
users on El Capitan (OS X 10.11) may have seen an InternalError on import.

2.8.102 1.1 - 2015-10-28

• Added support for Elliptic Curve Diffie-Hellman with ECDH .

• Added X963KDF.

• Added support for parsing certificate revocation lists (CRLs) using load_pem_x509_crl() and
load_der_x509_crl().

• Add support for AES key wrapping with aes_key_wrap() and aes_key_unwrap().

• Added a __hash__ method to Name.

• Add support for encoding and decoding elliptic curve points to a byte string form using cryptography.hazmat.
primitives.asymmetric.ec.EllipticCurvePublicNumbers.encode_point and cryptography.
hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers.from_encoded_point.

• Added get_extension_for_class().

• CertificatePolicies are now supported in the CertificateBuilder.

• countryName is now encoded as a PrintableString when creating subject and issuer distinguished names
with the Certificate and CSR builder classes.

2.8.103 1.0.2 - 2015-09-27

• SECURITY ISSUE: The OpenSSL backend prior to 1.0.2 made extensive use of assertions to check response
codes where our tests could not trigger a failure. However, when Python is run with -O these asserts are optimized
away. If a user ran Python with this flag and got an invalid response code this could result in undefined behavior
or worse. Accordingly, all response checks from the OpenSSL backend have been converted from assert to a
true function call. Credit Emilia Käsper (Google Security Team) for the report.

2.8.104 1.0.1 - 2015-09-05

• We now ship OS X wheels that statically link OpenSSL by default. When installing a wheel on OS X 10.10+
(and using a Python compiled against the 10.10 SDK) users will no longer need to compile. See Installation for
alternate installation methods if required.

• Set the default string mask to UTF-8 in the OpenSSL backend to resolve character encoding issues with older
versions of OpenSSL.

• Several new OpenSSL bindings have been added to support a future pyOpenSSL release.

• Raise an error during install on PyPy < 2.6. 1.0+ requires PyPy 2.6+.

2.8. Changelog 239

Cryptography Documentation, Release 43.0.0.dev1

2.8.105 1.0 - 2015-08-12

• Switched to the new cffi set_source out-of-line API mode for compilation. This results in significantly faster
imports and lowered memory consumption. Due to this change we no longer support PyPy releases older than
2.6 nor do we support any released version of PyPy3 (until a version supporting cffi 1.0 comes out).

• Fix parsing of OpenSSH public keys that have spaces in comments.

• Support serialization of certificate signing requests using the public_bytes method of
CertificateSigningRequest.

• Support serialization of certificates using the public_bytes method of Certificate.

• Add get_provisioning_uri method to HOTP and TOTP for generating provisioning URIs.

• Add ConcatKDFHash and ConcatKDFHMAC.

• Raise a TypeError when passing objects that are not text as the value to NameAttribute.

• Add support for OtherName as a general name type.

• Added new X.509 extension support in Certificate The following new extensions are now supported:

– OCSPNoCheck

– InhibitAnyPolicy

– IssuerAlternativeName

– NameConstraints

• Extension support was added to CertificateSigningRequest.

• Add support for creating signed certificates with CertificateBuilder. This includes support for the following
extensions:

– BasicConstraints

– SubjectAlternativeName

– KeyUsage

– ExtendedKeyUsage

– SubjectKeyIdentifier

– AuthorityKeyIdentifier

– AuthorityInformationAccess

– CRLDistributionPoints

– InhibitAnyPolicy

– IssuerAlternativeName

– OCSPNoCheck

• Add support for creating certificate signing requests with CertificateSigningRequestBuilder. This in-
cludes support for the same extensions supported in the CertificateBuilder.

• Deprecate encode_rfc6979_signature and decode_rfc6979_signature in favor of
encode_dss_signature() and decode_dss_signature().

240 Chapter 2. Layout

https://cffi.readthedocs.io/

Cryptography Documentation, Release 43.0.0.dev1

2.8.106 0.9.3 - 2015-07-09

• Updated Windows wheels to be compiled against OpenSSL 1.0.2d.

2.8.107 0.9.2 - 2015-07-04

• Updated Windows wheels to be compiled against OpenSSL 1.0.2c.

2.8.108 0.9.1 - 2015-06-06

• SECURITY ISSUE: Fixed a double free in the OpenSSL backend when using DSA to verify signatures. Note
that this only affects PyPy 2.6.0 and (presently unreleased) CFFI versions greater than 1.1.0.

2.8.109 0.9 - 2015-05-13

• Removed support for Python 3.2. This version of Python is rarely used and caused support headaches. Users
affected by this should upgrade to 3.3+.

• Deprecated support for Python 2.6. At the time there is no time table for actually dropping support, however we
strongly encourage all users to upgrade their Python, as Python 2.6 no longer receives support from the Python
core team.

• Add support for the SECP256K1 elliptic curve.

• Fixed compilation when using an OpenSSL which was compiled with the no-comp (OPENSSL_NO_COMP) option.

• Support DER serialization of public keys using the public_bytes method of RSAPublicKey, DSAPublicKey,
and EllipticCurvePublicKey.

• Support DER serialization of private keys using the private_bytes method of RSAPrivateKey,
DSAPrivateKey, and EllipticCurvePrivateKey.

• Add support for parsing X.509 certificate signing requests (CSRs) with load_pem_x509_csr() and
load_der_x509_csr().

• Moved cryptography.exceptions.InvalidToken to cryptography.hazmat.primitives.
twofactor.InvalidToken and deprecated the old location. This was moved to minimize confusion
between this exception and cryptography.fernet.InvalidToken.

• Added support for X.509 extensions in Certificate objects. The following extensions are supported as of this
release:

– BasicConstraints

– AuthorityKeyIdentifier

– SubjectKeyIdentifier

– KeyUsage

– SubjectAlternativeName

– ExtendedKeyUsage

– CRLDistributionPoints

– AuthorityInformationAccess

– CertificatePolicies

2.8. Changelog 241

Cryptography Documentation, Release 43.0.0.dev1

Note that unsupported extensions with the critical flag raise UnsupportedExtension while unsupported exten-
sions set to non-critical are silently ignored. Read the X.509 documentation for more information.

2.8.110 0.8.2 - 2015-04-10

• Fixed a race condition when initializing the OpenSSL or CommonCrypto backends in a multi-threaded scenario.

2.8.111 0.8.1 - 2015-03-20

• Updated Windows wheels to be compiled against OpenSSL 1.0.2a.

2.8.112 0.8 - 2015-03-08

• load_ssh_public_key() can now load elliptic curve public keys.

• Added signature_hash_algorithm support to Certificate.

• Added rsa_recover_prime_factors()

• KeyDerivationFunction was moved from cryptography.hazmat.primitives.interfaces to kdf .

• Added support for parsing X.509 names. See the X.509 documentation for more information.

• Added load_der_private_key() to support loading of DER encoded private keys and
load_der_public_key() to support loading DER encoded public keys.

• Fixed building against LibreSSL, a compile-time substitute for OpenSSL.

• FreeBSD 9.2 was removed from the continuous integration system.

• Updated Windows wheels to be compiled against OpenSSL 1.0.2.

• load_pem_public_key() and load_der_public_key() now support PKCS1 RSA public keys (in addition
to the previous support for SubjectPublicKeyInfo format for RSA, EC, and DSA).

• Added EllipticCurvePrivateKeyWithSerialization and deprecated
EllipticCurvePrivateKeyWithNumbers.

• Added private_bytes() to EllipticCurvePrivateKey.

• Added RSAPrivateKeyWithSerialization and deprecated RSAPrivateKeyWithNumbers.

• Added private_bytes() to RSAPrivateKey.

• Added DSAPrivateKeyWithSerialization and deprecated DSAPrivateKeyWithNumbers.

• Added private_bytes() to DSAPrivateKey.

• Added RSAPublicKeyWithSerialization and deprecated RSAPublicKeyWithNumbers.

• Added public_bytes to RSAPublicKey.

• Added EllipticCurvePublicKeyWithSerialization and deprecated EllipticCurvePublicKeyWithNumbers.

• Added public_bytes to EllipticCurvePublicKey.

• Added DSAPublicKeyWithSerialization and deprecated DSAPublicKeyWithNumbers.

• Added public_bytes to DSAPublicKey.

• HashAlgorithm and HashContext were moved from cryptography.hazmat.primitives.interfaces to
hashes.

242 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

• CipherContext, AEADCipherContext, AEADEncryptionContext, CipherAlgorithm , and
BlockCipherAlgorithm were moved from cryptography.hazmat.primitives.interfaces to ciphers.

• Mode, ModeWithInitializationVector, ModeWithNonce, and ModeWithAuthenticationTag were
moved from cryptography.hazmat.primitives.interfaces to modes.

• PaddingContext was moved from cryptography.hazmat.primitives.interfaces to padding.

• AsymmetricPadding was moved from cryptography.hazmat.primitives.interfaces to padding.

• AsymmetricSignatureContext and AsymmetricVerificationContext were moved from
cryptography.hazmat.primitives.interfaces to cryptography.hazmat.primitives.asymmetric.

• DSAParameters, DSAParametersWithNumbers, DSAPrivateKey, DSAPrivateKeyWithNumbers,
DSAPublicKey and DSAPublicKeyWithNumbers were moved from cryptography.hazmat.primitives.
interfaces to dsa

• EllipticCurve, EllipticCurveSignatureAlgorithm , EllipticCurvePrivateKey,
EllipticCurvePrivateKeyWithNumbers, EllipticCurvePublicKey, and
EllipticCurvePublicKeyWithNumbers were moved from cryptography.hazmat.primitives.
interfaces to ec.

• RSAPrivateKey, RSAPrivateKeyWithNumbers, RSAPublicKey and RSAPublicKeyWithNumbers were
moved from cryptography.hazmat.primitives.interfaces to rsa.

2.8.113 0.7.2 - 2015-01-16

• Updated Windows wheels to be compiled against OpenSSL 1.0.1l.

• enum34 is no longer installed on Python 3.4, where it is included in the standard library.

• Added a new function to the OpenSSL bindings to support additional functionality in pyOpenSSL.

2.8.114 0.7.1 - 2014-12-28

• Fixed an issue preventing compilation on platforms where OPENSSL_NO_SSL3 was defined.

2.8.115 0.7 - 2014-12-17

• Cryptography has been relicensed from the Apache Software License, Version 2.0, to being available under either
the Apache Software License, Version 2.0, or the BSD license.

• Added key-rotation support to Fernet with MultiFernet.

• More bit-lengths are now supported for p and q when loading DSA keys from numbers.

• Added MACContext as a common interface for CMAC and HMAC and deprecated CMACContext.

• Added support for encoding and decoding RFC 6979 signatures in Asymmetric Utilities.

• Added load_ssh_public_key() to support the loading of OpenSSH public keys (RFC 4253). Only RSA and
DSA keys are currently supported.

• Added initial support for X.509 certificate parsing. See the X.509 documentation for more information.

2.8. Changelog 243

https://datatracker.ietf.org/doc/html/rfc6979.html
https://datatracker.ietf.org/doc/html/rfc4253.html

Cryptography Documentation, Release 43.0.0.dev1

2.8.116 0.6.1 - 2014-10-15

• Updated Windows wheels to be compiled against OpenSSL 1.0.1j.

• Fixed an issue where OpenSSL 1.0.1j changed the errors returned by some functions.

• Added our license file to the cryptography-vectors package.

• Implemented DSA hash truncation support (per FIPS 186-3) in the OpenSSL backend. This works around an
issue in 1.0.0, 1.0.0a, and 1.0.0b where truncation was not implemented.

2.8.117 0.6 - 2014-09-29

• Added load_pem_private_key() to ease loading private keys, and load_pem_public_key() to support
loading public keys.

• Removed the, deprecated in 0.4, support for the salt_length argument to the MGF1 constructor. The
salt_length should be passed to PSS instead.

• Fix compilation on OS X Yosemite.

• Deprecated elliptic_curve_private_key_from_numbers and elliptic_curve_public_key_from_numbers
in favor of load_elliptic_curve_private_numbers and load_elliptic_curve_public_numbers on
EllipticCurveBackend.

• Added EllipticCurvePrivateKeyWithNumbers and EllipticCurvePublicKeyWithNumbers support.

• Work around three GCM related bugs in CommonCrypto and OpenSSL.

– On the CommonCrypto backend adding AAD but not subsequently calling update would return null tag
bytes.

– One the CommonCrypto backend a call to update without an empty add AAD call would return null ci-
phertext bytes.

– On the OpenSSL backend with certain versions adding AAD only would give invalid tag bytes.

• Support loading EC private keys from PEM.

2.8.118 0.5.4 - 2014-08-20

• Added several functions to the OpenSSL bindings to support new functionality in pyOpenSSL.

• Fixed a redefined constant causing compilation failure with Solaris 11.2.

2.8.119 0.5.3 - 2014-08-06

• Updated Windows wheels to be compiled against OpenSSL 1.0.1i.

244 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

2.8.120 0.5.2 - 2014-07-09

• Add TraditionalOpenSSLSerializationBackend support to multibackend.

• Fix compilation error on OS X 10.8 (Mountain Lion).

2.8.121 0.5.1 - 2014-07-07

• Add PKCS8SerializationBackend support to multibackend.

2.8.122 0.5 - 2014-07-07

• BACKWARDS INCOMPATIBLE: GCM no longer allows truncation of tags by default. Previous versions of
cryptography allowed tags to be truncated by default, applications wishing to preserve this behavior (not rec-
ommended) can pass the min_tag_length argument.

• Windows builds now statically link OpenSSL by default. When installing a wheel on Windows you no longer
need to install OpenSSL separately. Windows users can switch between static and dynamic linking with an
environment variable. See Installation for more details.

• Added HKDFExpand .

• Added CFB8 support for AES and TripleDES on commoncrypto and openssl.

• Added AES CTR support to the OpenSSL backend when linked against 0.9.8.

• Added PKCS8SerializationBackend and TraditionalOpenSSLSerializationBackend support to
openssl.

• Added Elliptic curve cryptography and EllipticCurveBackend.

• Added ECB support for TripleDES on commoncrypto and openssl.

• Deprecated the concrete RSAPrivateKey class in favor of backend specific providers of the cryptography.
hazmat.primitives.asymmetric.rsa.RSAPrivateKey interface.

• Deprecated the concrete RSAPublicKey in favor of backend specific providers of the cryptography.hazmat.
primitives.asymmetric.rsa.RSAPublicKey interface.

• Deprecated the concrete DSAPrivateKey class in favor of backend specific providers of the cryptography.
hazmat.primitives.asymmetric.dsa.DSAPrivateKey interface.

• Deprecated the concrete DSAPublicKey class in favor of backend specific providers of the cryptography.
hazmat.primitives.asymmetric.dsa.DSAPublicKey interface.

• Deprecated the concrete DSAParameters class in favor of backend specific providers of the cryptography.
hazmat.primitives.asymmetric.dsa.DSAParameters interface.

• Deprecated encrypt_rsa, decrypt_rsa, create_rsa_signature_ctx and
create_rsa_verification_ctx on RSABackend.

• Deprecated create_dsa_signature_ctx and create_dsa_verification_ctx on DSABackend.

2.8. Changelog 245

Cryptography Documentation, Release 43.0.0.dev1

2.8.123 0.4 - 2014-05-03

• Deprecated salt_length on MGF1 and added it to PSS. It will be removed from MGF1 in two releases per our
API stability policy.

• Added SEED support.

• Added CMAC.

• Added decryption support to RSAPrivateKey and encryption support to RSAPublicKey.

• Added signature support to DSAPrivateKey and verification support to DSAPublicKey.

2.8.124 0.3 - 2014-03-27

• Added HOTP.

• Added TOTP.

• Added IDEA support.

• Added signature support to RSAPrivateKey and verification support to RSAPublicKey.

• Moved test vectors to the new cryptography_vectors package.

2.8.125 0.2.2 - 2014-03-03

• Removed a constant definition that was causing compilation problems with specific versions of OpenSSL.

2.8.126 0.2.1 - 2014-02-22

• Fix a bug where importing cryptography from multiple paths could cause initialization to fail.

2.8.127 0.2 - 2014-02-20

• Added commoncrypto.

• Added initial commoncrypto.

• Removed register_cipher_adapter method from CipherBackend.

• Added support for the OpenSSL backend under Windows.

• Improved thread-safety for the OpenSSL backend.

• Fixed compilation on systems where OpenSSL’s ec.h header is not available, such as CentOS.

• Added PBKDF2HMAC.

• Added HKDF.

• Added multibackend.

• Set default random for openssl to the OS random engine.

• Added CAST5 (CAST-128) support.

246 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

2.8.128 0.1 - 2014-01-08

• Initial release.

2.9 Frequently asked questions

2.9.1 What issues can you help with in your issue tracker?

The primary purpose of our issue tracker is to enable us to identify and resolve bugs and feature requests in
cryptography, so any time a user files a bug, we start by asking: Is this a cryptography bug, or is it a bug somewhere
else?

That said, we do our best to help users to debug issues that are in their code or environments. Please note, however,
that there’s a limit to our ability to assist users in resolving problems that are specific to their environments, particularly
when we have no way to reproduce the issue.

Lastly, we’re not able to provide support for general Python or Python packaging issues.

2.9.2 I cannot suppress the deprecation warning that cryptography emits on import

Hint: The deprecation warning emitted on import does not inherit DeprecationWarning but inherits UserWarning
instead.

If your pytest setup follows the best practices of failing on emitted warnings (filterwarnings = error), you may
ignore it by adding the following line at the end of the list:

ignore:Python 2 is no longer supported by the Python core team. Support for it is now␣
→˓deprecated in cryptography, and will be removed in a future release.:UserWarning

Note: Using cryptography.utils.CryptographyDeprecationWarning is not possible here because specifying
it triggers import cryptography internally that emits the warning before the ignore rule even kicks in.

Ref: https://github.com/pytest-dev/pytest/issues/7524

The same applies when you use filterwarnings() in your code or invoke CPython with -W command line option.

2.9.3 cryptography failed to install!

If you are having issues installing cryptography the first troubleshooting step is to upgrade pip and then try to install
again. For most users this will take the form of pip install -U pip, but on Windows you should do python -m
pip install -U pip. If you are still seeing errors after upgrading and trying pip install cryptography again,
please see the Installation documentation.

2.9. Frequently asked questions 247

https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/exceptions.html#UserWarning
https://github.com/pytest-dev/pytest/issues/7524
https://docs.python.org/3/library/warnings.html#warnings.filterwarnings
https://docs.python.org/3/using/cmdline.html#cmdoption-W

Cryptography Documentation, Release 43.0.0.dev1

2.9.4 How does cryptography compare to NaCl (Networking and Cryptography Li-
brary)?

While cryptography and NaCl both share the goal of making cryptography easier, and safer, to use for developers,
cryptography is designed to be a general purpose library, interoperable with existing systems, while NaCl features a
collection of hand selected algorithms.

cryptography’s recipes layer has similar goals to NaCl.

If you prefer NaCl’s design, we highly recommend PyNaCl, which is also maintained by the PyCA team.

2.9.5 Why use cryptography?

If you’ve done cryptographic work in Python before you have likely encountered other libraries in Python such as
M2Crypto, PyCrypto, or PyOpenSSL. In building cryptography we wanted to address a few issues we observed in
the legacy libraries:

• Extremely error prone APIs and insecure defaults.

• Use of poor implementations of algorithms (i.e. ones with known side-channel attacks).

• Lack of maintenance.

• Lack of high level APIs.

• Lack of PyPy and Python 3 support.

• Absence of algorithms such as AES-GCM and HKDF.

2.9.6 Why does cryptography require Rust?

cryptography uses OpenSSL (see: Use of OpenSSL) for its cryptographic operations. OpenSSL is the de facto stan-
dard for cryptographic libraries and provides high performance along with various certifications that may be relevant to
developers. However, it is written in C and lacks memory safety. We want cryptography to be as secure as possible
while retaining the advantages of OpenSSL, so we’ve chosen to rewrite non-cryptographic operations (such as ASN.1
parsing) in a high performance memory safe language: Rust.

2.9.7 cryptography raised an InternalError and I’m not sure what to do?

Frequently InternalError is raised when there are errors on the OpenSSL error stack that were placed there by other
libraries that are also using OpenSSL. Try removing the other libraries and see if the problem persists. If you have no
other libraries using OpenSSL in your process, or they do not appear to be at fault, it’s possible that this is a bug in
cryptography. Please file an issue with instructions on how to reproduce it.

2.9.8 Installing cryptography with OpenSSL 0.9.8, 1.0.0, 1.0.1, 1.0.2, 1.1.0 fails

The OpenSSL project has dropped support for the 0.9.8, 1.0.0, 1.0.1, 1.0.2, and 1.1.0 release series. Since they are
no longer receiving security patches from upstream, cryptography is also dropping support for them. To fix this
issue you should upgrade to a newer version of OpenSSL (1.1.1 or later). This may require you to upgrade to a newer
operating system.

248 Chapter 2. Layout

https://nacl.cr.yp.to/
https://pynacl.readthedocs.io
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://github.com/pyca/cryptography/issues

Cryptography Documentation, Release 43.0.0.dev1

2.9.9 Installing cryptography fails with error: Can not find Rust compiler

Building cryptography from source requires you have Rust installed and available on your PATH. You may be able to
fix this by upgrading to a newer version of pip which will install a pre-compiled cryptography wheel. If not, you’ll
need to install Rust. Follow the instructions to ensure you install a recent Rust version.

Rust is only required during the build phase of cryptography, you do not need to have Rust installed after you’ve
built cryptography. This is the same as the C compiler toolchain which is also required to build cryptography, but
not afterwards.

2.9.10 I’m getting errors installing or importing cryptography on AWS Lambda

Make sure you’re following AWS’s documentation either for building .zip archives for Lambda or building container
images for Lambda.

2.9.11 Why are there no wheels for my Python3.x version?

Our Python3 wheels are abi3 wheels. This means they support multiple versions of Python. The abi3 wheel can
be used with any version of Python greater than or equal to the version it specifies. Recent versions of pip will
automatically install abi3 wheels.

2.9.12 Why can’t I import my PEM file?

PEM is a format (defined by several RFCs, but originally RFC 1421) for encoding keys, certificates, and others cryp-
tographic data into a regular form. The data is encoded as base64 and wrapped with a header and footer.

If you are having trouble importing PEM files, make sure your file fits the following rules:

• has a one-line header like this: -----BEGIN [FILE TYPE]----- (where [FILE TYPE] is CERTIFICATE,
PUBLIC KEY, PRIVATE KEY, etc.)

• has a one-line footer like this: -----END [FILE TYPE]-----

• all lines, except for the final one, must consist of exactly 64 characters.

For example, this is a PEM file for a RSA Public Key:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA7CsKFSzq20NLb2VQDXma
9DsDXtKADv0ziI5hT1KG6Bex5seE9pUoEcUxNv4uXo2jzAUgyRweRl/DLU8SoN8+
WWd6YWik4GZvNv7j0z28h9Q5jRySxy4dmElFtIRHGiKhqd1Z06z4AzrmKEzgxkOk
LJjY9cvwD+iXjpK2oJwNNyavvjb5YZq6V60RhpyNtKpMh2+zRLgIk9sROEPQeYfK
22zj2CnGBMg5Gm2uPOsGDltl/I/Fdh1aO3X4i1GXwCuPf1kSAg6lPJD0batftkSG
v0X0heUaV0j1HSNlBWamT4IR9+iJfKJHekOqvHQBcaCu7Ja4kXzx6GZ3M2j/Ja3A
2QIDAQAB
-----END PUBLIC KEY-----

2.9. Frequently asked questions 249

https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://datatracker.ietf.org/doc/html/rfc1421.html

Cryptography Documentation, Release 43.0.0.dev1

2.9.13 What happened to the backend argument?

cryptography stopped requiring the use of backend arguments in version 3.1 and deprecated their use in version
36.0. If you are on an older version that requires these arguments please view the appropriate documentation version
or upgrade to the latest release.

Note that for forward compatibility backend is still silently accepted by functions that previously required it, but it is
ignored and no longer documented.

2.9.14 Will you upload wheels for my non-x86 non-ARM64 CPU architecture?

Maybe! But there’s some pre-requisites. For us to build wheels and upload them to PyPI, we consider it necessary to
run our tests for that architecture as a part of our CI (i.e. for every commit). If we don’t run the tests, it’s hard to have
confidence that everything works – particularly with cryptography, which frequently employs per-architecture assembly
code.

For us to add something to CI we need a provider which offers builds on that architecture, which integrate into our
workflows, has sufficient capacity, and performs well enough not to regress the contributor experience. We don’t think
this is an insurmountable bar, but it’s also not one that can be cleared lightly.

If you are interested in helping support a new CPU architecture, we encourage you to reach out, discuss, and contribute
that support. We will attempt to be supportive, but we cannot commit to doing the work ourselves.

2.10 Development

As an open source project, cryptography welcomes contributions of all forms. The sections below will help you get
started.

File bugs and feature requests on our issue tracker on GitHub. If it is a bug check out what to put in your bug report.

2.10.1 Getting started

Development dependencies

Working on cryptography requires the installation of a small number of development dependencies in addition to the
dependencies for Installation (including Rust). These are handled by the use of nox, which can be installed with pip.

$ # Create a virtualenv and activate it
$ # Set up your cryptography build environment
$ pip install nox
$ nox -e local

250 Chapter 2. Layout

https://github.com/pyca/cryptography
https://www.contribution-guide.org/#what-to-put-in-your-bug-report

Cryptography Documentation, Release 43.0.0.dev1

OpenSSL on macOS

You must have installed OpenSSL (via Homebrew , MacPorts) before invoking nox or else pip will fail to compile.

Running tests

cryptography unit tests are found in the tests/ directory and are designed to be run using pytest. nox automatically
invokes pytest and other required checks for cryptography:

$ nox -e local

You can also specify a subset of tests to run as positional arguments:

$ # run the whole x509 testsuite, plus the fernet tests
$ nox -e local -- tests/x509/ tests/test_fernet.py

2.10.2 Submitting patches

• Always make a new branch for your work.

• Patches should be small to facilitate easier review. Studies have shown that review quality falls off as patch size
grows. Sometimes this will result in many small PRs to land a single large feature.

• Larger changes should be discussed on our mailing list before submission.

• New features and significant bug fixes should be documented in the Changelog.

• You must have legal permission to distribute any code you contribute to cryptography, and it must be available
under both the BSD and Apache Software License Version 2.0 licenses.

If you believe you’ve identified a security issue in cryptography, please follow the directions on the security page.

Code

When in doubt, refer to PEP 8 for Python code. You can check if your code meets our automated requirements by
formatting it with ruff format and running ruff against it. If you’ve installed the development requirements this
will automatically use our configuration. You can also run the nox job with nox -e flake.

Write comments as complete sentences.

Class names which contains acronyms or initialisms should always be capitalized. A class should be named
HTTPClient, not HttpClient.

Every code file must start with the boilerplate licensing notice:

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

2.10. Development 251

https://www.openssl.org
https://brew.sh
https://www.macports.org
https://pypi.org/project/pytest/
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/
https://mail.python.org/mailman/listinfo/cryptography-dev
https://peps.python.org/pep-0008/
https://nedbatchelder.com/blog/201401/comments_should_be_sentences.html

Cryptography Documentation, Release 43.0.0.dev1

API considerations

Most projects’ APIs are designed with a philosophy of “make easy things easy, and make hard things possible”. One
of the perils of writing cryptographic code is that secure code looks just like insecure code, and its results are almost
always indistinguishable. As a result, cryptography has, as a design philosophy: “make it hard to do insecure things”.
Here are a few strategies for API design that should be both followed, and should inspire other API choices:

If it is necessary to compare a user provided value with a computed value (for example, verifying a signature), there
should be an API provided that performs the verification in a secure way (for example, using a constant time compari-
son), rather than requiring the user to perform the comparison themselves.

If it is incorrect to ignore the result of a method, it should raise an exception, and not return a boolean True/False flag.
For example, a method to verify a signature should raise InvalidSignature, and not return whether the signature
was valid.

This is bad.
def verify(sig: bytes) -> bool:

...
return is_valid

Good!
def verify(sig: bytes) -> None:

...
if not is_valid:

raise InvalidSignature

Every recipe should include a version or algorithmic marker of some sort in its output in order to allow transparent
upgrading of the algorithms in use, as the algorithms or parameters needed to achieve a given security margin evolve.

C bindings

More information on C bindings can be found in the dedicated section of the documentation.

Tests

All code changes must be accompanied by unit tests with 100% code coverage (as measured by the combined metrics
across our build matrix).

When implementing a new primitive or recipe cryptography requires that you provide a set of test vectors. See Test
vectors for more details.

Documentation

All features should be documented with prose in the docs section. To ensure it builds you can run nox -e docs.

Because of the inherent challenges in implementing correct cryptographic systems, we want to make our documentation
point people in the right directions as much as possible. To that end:

• When documenting a generic interface, use a strong algorithm in examples. (e.g. when showing a hashing
example, don’t use MD5)

• When giving prescriptive advice, always provide references and supporting material.

• When there is real disagreement between cryptographic experts, represent both sides of the argument and de-
scribe the trade-offs clearly.

252 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

When documenting a new module in the hazmat package, its documentation should begin with the “Hazardous Mate-
rials” warning:

.. hazmat::

Always prefer terminology that is most broadly accepted. For example:

• When referring to class instances use “an instance of Foo” instead of “a Foo provider”.

When referring to a hypothetical individual (such as “a person receiving an encrypted message”) use gender neutral
pronouns (they/them/their).

Docstrings are typically only used when writing abstract classes, but should be written like this if required:

def some_function(some_arg):
"""
Does some things.

:param some_arg: Some argument.
"""

So, specifically:

• Always use three double quotes.

• Put the three double quotes on their own line.

• No blank line at the end.

• Use Sphinx parameter/attribute documentation syntax.

2.10.3 Reviewing and merging patches

Everyone is encouraged to review open pull requests. We only ask that you try and think carefully, ask questions and
are excellent to one another. Code review is our opportunity to share knowledge, design ideas and make friends.

When reviewing a patch try to keep each of these concepts in mind:

Intent

• What is the change being proposed?

• Do we want this feature or is the bug they’re fixing really a bug?

Architecture

• Is the proposed change being made in the correct place? Is it a fix in the backend when it should be in the
primitives?

2.10. Development 253

https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#info-field-lists
https://speakerdeck.com/ohrite/better-code-review

Cryptography Documentation, Release 43.0.0.dev1

Implementation

• Does the change do what the author claims?

• Are there sufficient tests?

• Has it been documented?

• Will this change introduce new bugs?

Grammar and style

These are small things that are not caught by the automated style checkers.

• Does a variable need a better name?

• Should this be a keyword argument?

Merge requirements

Because cryptography is so complex, and the implications of getting it wrong so devastating, cryptography has a
strict merge policy for committers:

• Patches must never be pushed directly to main, all changes (even the most trivial typo fixes!) must be submitted
as a pull request.

• A committer may never merge their own pull request, a second party must merge their changes. If multiple
people work on a pull request, it must be merged by someone who did not work on it.

• A patch that breaks tests, or introduces regressions by changing or removing existing tests should not be merged.
Tests must always be passing on main.

• If somehow the tests get into a failing state on main (such as by a backwards incompatible release of a depen-
dency) no pull requests may be merged until this is rectified.

• All merged patches must have 100% test coverage.

The purpose of these policies is to minimize the chances we merge a change that jeopardizes our users’ security.

2.10.4 Test vectors

Testing the correctness of the primitives implemented in cryptography requires trusted test vectors. Where possible
these vectors are obtained from official sources such as NIST or IETF RFCs. When this is not possible cryptography
has chosen to create a set of custom vectors using an official vector file as input.

Vectors are kept in the cryptography_vectors package rather than within our main test suite.

Sources

Project Wycheproof

We run vectors from Project Wycheproof – a collection of known edge-cases for various cryptographic algorithms.
These are not included in the repository (or cryptography_vectors package), but rather cloned from Git in our
continuous integration environments.

254 Chapter 2. Layout

https://www.nist.gov/
https://www.ietf.org/
https://github.com/C2SP/wycheproof

Cryptography Documentation, Release 43.0.0.dev1

Asymmetric ciphers

• RSA PKCS #1 from the RSA FTP site (ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/ and ftp://ftp.rsa.com/pub/
rsalabs/tmp/).

• RSA FIPS 186-2 and PKCS1 v1.5 vulnerability test vectors from NIST CAVP.

• FIPS 186-2 and FIPS 186-3 DSA test vectors from NIST CAVP.

• FIPS 186-2 and FIPS 186-3 ECDSA test vectors from NIST CAVP.

• DH and ECDH and ECDH+KDF(17.4) test vectors from NIST CAVP.

• Ed25519 test vectors from the Ed25519 website.

• OpenSSL PEM RSA serialization vectors from the OpenSSL example key and GnuTLS key parsing tests.

• asymmetric/PEM_Serialization/rsa-bad-1025-q-is-2.pem from badkeys.

• OpenSSL PEM DSA serialization vectors from the GnuTLS example keys.

• PKCS #8 PEM serialization vectors from

– GnuTLS: enc-rsa-pkcs8.pem, enc2-rsa-pkcs8.pem, unenc-rsa-pkcs8.pem, pkcs12_s2k_pem.c. The encod-
ing error in unenc-rsa-pkcs8.pem was fixed, and the contents of enc-rsa-pkcs8.pem was re-encrypted to
include it. The contents of enc2-rsa-pkcs8.pem was re-encrypted using a stronger PKCS#8 cipher.

– Botan’s ECC private keys.

• asymmetric/public/PKCS1/dsa.pub.pem is a PKCS1 DSA public key from the Ruby test suite.

• X25519 and X448 test vectors from RFC 7748.

• RSA OAEP with custom label from the BoringSSL evp tests.

• Ed448 test vectors from RFC 8032.

• Deterministic ECDSA (RFC 6979) from OpenSSL’s RFC 6979 test vectors.

Custom asymmetric vectors

SECP256K1 vector creation

This page documents the code that was used to generate the SECP256K1 elliptic curve test vectors as well as code used
to verify them against another implementation.

Creation

The vectors are generated using a pure Python ecdsa implementation. The test messages and combinations of algorithms
are derived from the NIST vector data.

import hashlib
import os
from binascii import hexlify
from collections import defaultdict

from ecdsa import SECP256k1, SigningKey
from ecdsa.util import sigdecode_der, sigencode_der

(continues on next page)

2.10. Development 255

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/
ftp://ftp.rsa.com/pub/rsalabs/tmp/
ftp://ftp.rsa.com/pub/rsalabs/tmp/
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://ed25519.cr.yp.to/software.html
https://github.com/openssl/openssl/blob/d02b48c63a58ea4367a0e905979f140b7d090f86/test/testrsa.pem
https://gitlab.com/gnutls/gnutls/-/commit/f16ef39ef0303b02d7fa590a37820440c466ce8d
https://github.com/vcsjones/badkeys/tree/50f1cc5f8d13bf3a2046d689f6452decb15d9c3c
https://gitlab.com/gnutls/gnutls/-/commit/ad2061deafdd7db78fd405f9d143b0a7c579da7b
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/encpkcs8.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/enc2pkcs8.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/unencpkcs8.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs12_s2k_pem.c
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/unencpkcs8.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/encpkcs8.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/enc2pkcs8.pem
https://github.com/randombit/botan/tree/4917f26a2b154e841cd27c1bcecdd41d2bdeb6ce/src/tests/data/ecc
https://github.com/ruby/ruby/blob/4ccb387f3bc436a08fc6d72c4931994f5de95110/test/openssl/test_pkey_dsa.rb#L53
https://datatracker.ietf.org/doc/html/rfc7748.html
https://boringssl.googlesource.com/boringssl/+/ce3773f9fe25c3b54390bc51d72572f251c7d7e6/crypto/evp/evp_tests.txt
https://datatracker.ietf.org/doc/html/rfc8032.html
https://datatracker.ietf.org/doc/html/rfc6979.html
https://github.com/openssl/openssl/blob/01690a7ff36c4d18c48b301cdf375c954105a1d9/test/recipes/30-test_evp_data/evppkey_ecdsa_rfc6979.txt
https://pypi.org/project/ecdsa/

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

from cryptography_vectors import open_vector_file
from tests.utils import load_fips_ecdsa_signing_vectors, load_vectors_from_file

HASHLIB_HASH_TYPES = {
"SHA-1": hashlib.sha1,
"SHA-224": hashlib.sha224,
"SHA-256": hashlib.sha256,
"SHA-384": hashlib.sha384,
"SHA-512": hashlib.sha512,

}

class TruncatedHash:
def __init__(self, hasher):

self.hasher = hasher

def __call__(self, data):
self.hasher.update(data)
return self

def digest(self):
return self.hasher.digest()[: 256 // 8]

def build_vectors(fips_vectors):
vectors = defaultdict(list)
for vector in fips_vectors:

vectors[vector["digest_algorithm"]].append(vector["message"])

for digest_algorithm, messages in vectors.items():
if digest_algorithm not in HASHLIB_HASH_TYPES:

continue

yield ""
yield f"[K-256,{digest_algorithm}]"
yield ""

for message in messages:
Make a hash context
hash_func = TruncatedHash(HASHLIB_HASH_TYPES[digest_algorithm]())

Sign the message using warner/ecdsa
secret_key = SigningKey.generate(curve=SECP256k1)
public_key = secret_key.get_verifying_key()
signature = secret_key.sign(

message, hashfunc=hash_func, sigencode=sigencode_der
)

r, s = sigdecode_der(signature, None)

yield f"Msg = {hexlify(message)}"
yield f"d = {secret_key.privkey.secret_multiplier:x}"

(continues on next page)

256 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

yield f"Qx = {public_key.pubkey.point.x():x}"
yield f"Qy = {public_key.pubkey.point.y():x}"
yield f"R = {r:x}"
yield f"S = {s:x}"
yield ""

def write_file(lines, dest):
for line in lines:

print(line)
print(line, file=dest)

source_path = os.path.join("asymmetric", "ECDSA", "FIPS_186-3", "SigGen.txt")
dest_path = os.path.join("asymmetric", "ECDSA", "SECP256K1", "SigGen.txt")

fips_vectors = load_vectors_from_file(
source_path, load_fips_ecdsa_signing_vectors

)

with open_vector_file(dest_path, "w") as dest_file:
write_file(build_vectors(fips_vectors), dest_file)

Download link: generate_secp256k1.py

Verification

cryptography was modified to support the SECP256K1 curve. Then the following python script was run to generate
the vector files.

import os

from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric.utils import (

encode_dss_signature,
)
from tests.utils import load_fips_ecdsa_signing_vectors, load_vectors_from_file

CRYPTOGRAPHY_HASH_TYPES = {
"SHA-1": hashes.SHA1,
"SHA-224": hashes.SHA224,
"SHA-256": hashes.SHA256,
"SHA-384": hashes.SHA384,
"SHA-512": hashes.SHA512,

}

def verify_one_vector(vector):
digest_algorithm = vector["digest_algorithm"]
message = vector["message"]

(continues on next page)

2.10. Development 257

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

x = vector["x"]
y = vector["y"]
signature = encode_dss_signature(vector["r"], vector["s"])

numbers = ec.EllipticCurvePublicNumbers(x, y, ec.SECP256K1())

key = numbers.public_key()

verifier = key.verifier(
signature, ec.ECDSA(CRYPTOGRAPHY_HASH_TYPES[digest_algorithm]())

)
verifier.update(message)
verifier.verify()

def verify_vectors(vectors):
for vector in vectors:

verify_one_vector(vector)

vector_path = os.path.join("asymmetric", "ECDSA", "SECP256K1", "SigGen.txt")

secp256k1_vectors = load_vectors_from_file(
vector_path, load_fips_ecdsa_signing_vectors

)

verify_vectors(secp256k1_vectors)

Download link: verify_secp256k1.py

RSA OAEP SHA2 vector creation

This page documents the code that was used to generate the RSA OAEP SHA2 test vectors as well as code used to
verify them against another implementation.

Creation

cryptography was modified to allow the use of SHA2 in OAEP encryption. Then the following python script was
run to generate the vector files.

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

import binascii
import itertools
import os

from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding, rsa

(continues on next page)

258 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

from tests.utils import load_pkcs1_vectors, load_vectors_from_file

def build_vectors(mgf1alg, hashalg, filename):
vectors = load_vectors_from_file(filename, load_pkcs1_vectors)

output = []
for vector in vectors:

RSA keys for this must be long enough to accommodate the length of
the underlying hash function. This means we can't use the keys from
the sha1 test vectors for sha512 tests because 1024-bit keys are too
small. Instead we parse the vectors for the test cases, then
generate our own 2048-bit keys for each.
private, _ = vector
skey = rsa.generate_private_key(65537, 2048)
pn = skey.private_numbers()
examples = private["examples"]
output.append("# ===")
output.append("# Example")
output.append("# Public key")
output.append("# Modulus:")
output.append(format(pn.public_numbers.n, "x"))
output.append("# Exponent:")
output.append(format(pn.public_numbers.e, "x"))
output.append("# Private key")
output.append("# Modulus:")
output.append(format(pn.public_numbers.n, "x"))
output.append("# Public exponent:")
output.append(format(pn.public_numbers.e, "x"))
output.append("# Exponent:")
output.append(format(pn.d, "x"))
output.append("# Prime 1:")
output.append(format(pn.p, "x"))
output.append("# Prime 2:")
output.append(format(pn.q, "x"))
output.append("# Prime exponent 1:")
output.append(format(pn.dmp1, "x"))
output.append("# Prime exponent 2:")
output.append(format(pn.dmq1, "x"))
output.append("# Coefficient:")
output.append(format(pn.iqmp, "x"))
pkey = skey.public_key()
vectorkey = rsa.RSAPrivateNumbers(

p=private["p"],
q=private["q"],
d=private["private_exponent"],
dmp1=private["dmp1"],
dmq1=private["dmq1"],
iqmp=private["iqmp"],
public_numbers=rsa.RSAPublicNumbers(

e=private["public_exponent"], n=private["modulus"]
),

(continues on next page)

2.10. Development 259

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

).private_key()
count = 1

for example in examples:
message = vectorkey.decrypt(

binascii.unhexlify(example["encryption"]),
padding.OAEP(

mgf=padding.MGF1(algorithm=hashes.SHA1()),
algorithm=hashes.SHA1(),
label=None,

),
)
assert message == binascii.unhexlify(example["message"])
ct = pkey.encrypt(

message,
padding.OAEP(

mgf=padding.MGF1(algorithm=mgf1alg),
algorithm=hashalg,
label=None,

),
)
output.append(

f"# OAEP Example {count} alg={hashalg.name} "
f"mgf1={mgf1alg.name}"

)
count += 1
output.append("# Message:")
output.append(example["message"].decode("utf-8"))
output.append("# Encryption:")
output.append(binascii.hexlify(ct).decode("utf-8"))

return "\n".join(output)

def write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

oaep_path = os.path.join(
"asymmetric", "RSA", "pkcs-1v2-1d2-vec", "oaep-vect.txt"

)
hashalgs = [

hashes.SHA1(),
hashes.SHA224(),
hashes.SHA256(),
hashes.SHA384(),
hashes.SHA512(),

]
for hashtuple in itertools.product(hashalgs, hashalgs):

if isinstance(hashtuple[0], hashes.SHA1) and isinstance(
hashtuple[1], hashes.SHA1

(continues on next page)

260 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

):
continue

write_file(
build_vectors(hashtuple[0], hashtuple[1], oaep_path),
f"oaep-{hashtuple[0].name}-{hashtuple[1].name}.txt",

)

Download link: generate_rsa_oaep_sha2.py

Verification

A Java 8 program was written using Bouncy Castle to load and verify the test vectors.

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.math.BigInteger;
import java.security.AlgorithmParameters;
import java.security.GeneralSecurityException;
import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.Security;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.MGF1ParameterSpec;
import java.security.spec.RSAPrivateKeySpec;
import java.util.Arrays;

import javax.crypto.Cipher;
import javax.crypto.spec.OAEPParameterSpec;
import javax.crypto.spec.PSource;
import javax.xml.bind.DatatypeConverter;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

class TestVectorData {
public BigInteger pub_key_modulus;
public BigInteger pub_key_exponent;
public BigInteger priv_key_public_exponent;
public BigInteger priv_key_modulus;
public BigInteger priv_key_exponent;
public BigInteger priv_key_prime_1;
public BigInteger priv_key_prime_2;
public BigInteger priv_key_prime_exponent_1;
public BigInteger priv_key_prime_exponent_2;
public BigInteger priv_key_coefficient;
public byte[] plaintext;
public byte[] ciphertext;

}

class TestVectorLoader {
(continues on next page)

2.10. Development 261

https://www.bouncycastle.org/

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

private static final String FILE_HEADER = "# RSA OAEP SHA2 vectors built";
private static final String EXAMPLE_HEADER = "# =====";
private static final String EXAMPLE = "# Example";
private static final String PUBLIC_KEY = "# Public key";
private static final String PUB_MODULUS = "# Modulus:";
private static final String PUB_EXPONENT = "# Exponent:";
private static final String PRIVATE_KEY = "# Private key";
private static final String PRIV_MODULUS = "# Modulus:";
private static final String PRIV_PUBLIC_EXPONENT = "# Public exponent:";
private static final String PRIV_EXPONENT = "# Exponent:";
private static final String PRIV_PRIME_1 = "# Prime 1:";
private static final String PRIV_PRIME_2 = "# Prime 2:";
private static final String PRIV_PRIME_EXPONENT_1 = "# Prime exponent 1:";
private static final String PRIV_PRIME_EXPONENT_2 = "# Prime exponent 2:";
private static final String PRIV_COEFFICIENT = "# Coefficient:";
private static final String OAEP_EXAMPLE_HEADER = "# OAEP Example";
private static final String MESSAGE = "# Message:";
private static final String ENCRYPTION = "# Encryption:";

private BufferedReader m_reader = null;
private FileReader m_file_reader = null;
private TestVectorData m_data = null;

TestVectorLoader() {

}

protected void finalize() {
close();

}

public void open(String path) throws IOException {
close();
m_file_reader = new FileReader(path);
m_reader = new BufferedReader(m_file_reader);
m_data = new TestVectorData();

}

public void close() {
try {

if (m_reader != null) {
m_reader.close();
m_reader = null;

}
if (m_file_reader != null) {

m_file_reader.close();
m_file_reader = null;

}
m_data = null;

} catch (IOException e) {
System.out.println("Exception closing files");
e.printStackTrace();

(continues on next page)

262 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

}
}

public TestVectorData loadNextTest() throws IOException {
if (m_file_reader == null || m_reader == null || m_data == null) {

throw new IOException("A test vector file must be opened first");
}

String line = m_reader.readLine();

if (line == null) {
// end of file
return null;

}

if (line.startsWith(FILE_HEADER)) {
// start of file
skipFileHeader(m_reader);
line = m_reader.readLine();

}

if (line.startsWith(OAEP_EXAMPLE_HEADER)) {
// Next example, keep existing keys and load next message
loadMessage(m_reader, m_data);
return m_data;

}

// otherwise it's a new example
if (!line.startsWith(EXAMPLE_HEADER)) {

throw new IOException("Test Header Missing");
}
startNewTest(m_reader);
m_data = new TestVectorData();

line = m_reader.readLine();
if (!line.startsWith(PUBLIC_KEY))

throw new IOException("Public Key Missing");
loadPublicKey(m_reader, m_data);

line = m_reader.readLine();
if (!line.startsWith(PRIVATE_KEY))

throw new IOException("Private Key Missing");
loadPrivateKey(m_reader, m_data);

line = m_reader.readLine();
if (!line.startsWith(OAEP_EXAMPLE_HEADER))

throw new IOException("Message Missing");
loadMessage(m_reader, m_data);

return m_data;
}

(continues on next page)

2.10. Development 263

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

private byte[] unhexlify(String line) {
byte[] bytes = DatatypeConverter.parseHexBinary(line);
return bytes;

}

private BigInteger readBigInteger(BufferedReader br) throws IOException {
return new BigInteger(br.readLine(), 16);

}

private void skipFileHeader(BufferedReader br) throws IOException {
br.readLine(); // # # Derived from the NIST OAEP SHA1 vectors
br.readLine(); // # # Verified against the Bouncy Castle OAEP SHA2 implementation
br.readLine(); // #

}

private void startNewTest(BufferedReader br) throws IOException {
String line = br.readLine();
if (!line.startsWith(EXAMPLE))

throw new IOException("Example Header Missing");
}

private void loadPublicKey(BufferedReader br, TestVectorData data) throws␣
→˓IOException {

String line = br.readLine();
if (!line.startsWith(PUB_MODULUS))

throw new IOException("Public Key Modulus Missing");
data.pub_key_modulus = readBigInteger(br);

line = br.readLine();
if (!line.startsWith(PUB_EXPONENT))

throw new IOException("Public Key Exponent Missing");
data.pub_key_exponent = readBigInteger(br);

}

private void loadPrivateKey(BufferedReader br, TestVectorData data) throws␣
→˓IOException {

String line = br.readLine();
if (!line.startsWith(PRIV_MODULUS))

throw new IOException("Private Key Modulus Missing");
data.priv_key_modulus = readBigInteger(br);

line = br.readLine();
if (!line.startsWith(PRIV_PUBLIC_EXPONENT))

throw new IOException("Private Key Public Exponent Missing");
data.priv_key_public_exponent = readBigInteger(br);

line = br.readLine();
if (!line.startsWith(PRIV_EXPONENT))

throw new IOException("Private Key Exponent Missing");
data.priv_key_exponent = readBigInteger(br);

line = br.readLine();

(continues on next page)

264 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

if (!line.startsWith(PRIV_PRIME_1))
throw new IOException("Private Key Prime 1 Missing");

data.priv_key_prime_1 = readBigInteger(br);

line = br.readLine();
if (!line.startsWith(PRIV_PRIME_2))

throw new IOException("Private Key Prime 2 Missing");
data.priv_key_prime_2 = readBigInteger(br);

line = br.readLine();
if (!line.startsWith(PRIV_PRIME_EXPONENT_1))

throw new IOException("Private Key Prime Exponent 1 Missing");
data.priv_key_prime_exponent_1 = readBigInteger(br);

line = br.readLine();
if (!line.startsWith(PRIV_PRIME_EXPONENT_2))

throw new IOException("Private Key Prime Exponent 2 Missing");
data.priv_key_prime_exponent_2 = readBigInteger(br);

line = br.readLine();
if (!line.startsWith(PRIV_COEFFICIENT))

throw new IOException("Private Key Coefficient Missing");
data.priv_key_coefficient = readBigInteger(br);

}

private void loadMessage(BufferedReader br, TestVectorData data) throws IOException {
String line = br.readLine();
if (!line.startsWith(MESSAGE))

throw new IOException("Plaintext Missing");
data.plaintext = unhexlify(br.readLine());

line = br.readLine();
if (!line.startsWith(ENCRYPTION))

throw new IOException("Ciphertext Missing");
data.ciphertext = unhexlify(br.readLine());

}

}

public class VerifyRSAOAEPSHA2 {

public enum SHAHash {
SHA1, SHA224, SHA256, SHA384, SHA512

}

private SHAHash m_mgf1_hash;
private SHAHash m_alg_hash;
private Cipher m_cipher;
private PrivateKey m_private_key;
private AlgorithmParameters m_algo_param;

VerifyRSAOAEPSHA2(SHAHash mgf1_hash, SHAHash alg_hash, TestVectorData test_data)␣

(continues on next page)

2.10. Development 265

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

→˓throws Exception {

m_mgf1_hash = mgf1_hash;
m_alg_hash = alg_hash;

MGF1ParameterSpec mgf1_spec = getMGF1ParameterSpec(m_mgf1_hash);
AlgorithmParameterSpec algo_param_spec = getAlgorithmParameterSpec(m_alg_hash,␣

→˓mgf1_spec);

m_algo_param = AlgorithmParameters.getInstance("OAEP");
m_algo_param.init(algo_param_spec);

m_private_key = loadPrivateKey(test_data);

m_cipher = getCipher(m_alg_hash);
}

private Cipher getCipher(SHAHash alg_hash) throws GeneralSecurityException {
Cipher cipher = null;

switch (alg_hash) {

case SHA1:
cipher = Cipher.getInstance("RSA/ECB/OAEPwithSHA1andMGF1Padding", "BC");
break;

case SHA224:
cipher = Cipher.getInstance("RSA/ECB/OAEPwithSHA-224andMGF1Padding", "BC");
break;

case SHA256:
cipher = Cipher.getInstance("RSA/ECB/OAEPwithSHA-256andMGF1Padding", "BC");
break;

case SHA384:
cipher = Cipher.getInstance("RSA/ECB/OAEPwithSHA-384andMGF1Padding", "BC");
break;

case SHA512:
cipher = Cipher.getInstance("RSA/ECB/OAEPwithSHA-512andMGF1Padding", "BC");
break;

}

return cipher;
}

private MGF1ParameterSpec getMGF1ParameterSpec(SHAHash mgf1_hash) {
MGF1ParameterSpec mgf1 = null;

switch (mgf1_hash) {

case SHA1:

(continues on next page)

266 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

mgf1 = MGF1ParameterSpec.SHA1;
break;

case SHA224:
mgf1 = MGF1ParameterSpec.SHA224;
break;

case SHA256:
mgf1 = MGF1ParameterSpec.SHA256;
break;

case SHA384:
mgf1 = MGF1ParameterSpec.SHA384;
break;

case SHA512:
mgf1 = MGF1ParameterSpec.SHA512;
break;

}

return mgf1;
}

private AlgorithmParameterSpec getAlgorithmParameterSpec(SHAHash alg_hash,␣
→˓MGF1ParameterSpec mgf1_spec) {

OAEPParameterSpec oaep_spec = null;

switch (alg_hash) {

case SHA1:
oaep_spec = new OAEPParameterSpec("SHA1", "MGF1", mgf1_spec, PSource.

→˓PSpecified.DEFAULT);
break;

case SHA224:
oaep_spec = new OAEPParameterSpec("SHA-224", "MGF1", mgf1_spec, PSource.

→˓PSpecified.DEFAULT);
break;

case SHA256:
oaep_spec = new OAEPParameterSpec("SHA-256", "MGF1", mgf1_spec, PSource.

→˓PSpecified.DEFAULT);
break;

case SHA384:
oaep_spec = new OAEPParameterSpec("SHA-384", "MGF1", mgf1_spec, PSource.

→˓PSpecified.DEFAULT);
break;

case SHA512:
oaep_spec = new OAEPParameterSpec("SHA-512", "MGF1", mgf1_spec, PSource.

→˓PSpecified.DEFAULT);

(continues on next page)

2.10. Development 267

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

break;
}

return oaep_spec;
}

private PrivateKey loadPrivateKey(TestVectorData test_data) throws Exception {
KeyFactory kf = KeyFactory.getInstance("RSA");

RSAPrivateKeySpec keySpec = new RSAPrivateKeySpec(test_data.priv_key_modulus,␣
→˓test_data.priv_key_exponent);

return kf.generatePrivate(keySpec);
}

public void testDecrypt(byte[] plaintext, byte[] ciphertext) throws Exception {
System.out.println("Verifying OAEP with mgf1_hash: " + m_mgf1_hash + " alg_hash:

→˓" + m_alg_hash + " - "
+ ciphertext.length + " bytes ciphertext - "
+ plaintext.length + " bytes plaintext");

m_cipher.init(Cipher.DECRYPT_MODE, m_private_key, m_algo_param);
byte[] java_plaintext = m_cipher.doFinal(ciphertext);

if (Arrays.equals(java_plaintext, plaintext) == false) {
throw new Exception("Verification failure - plaintext does not match after␣

→˓decryption.");
}

}

public static void main(String[] args) {
Security.addProvider(new BouncyCastleProvider());

// assume current directory if no path given on command line
String vector_path = "./vectors/cryptography_vectors/asymmetric/RSA/oaep-custom";

if (args.length > 0) {
vector_path = args[0];

}

System.out.println("Vector file path: " + vector_path);

try {
// loop over each combination of hash loading the vector file
// to verify for each
for (SHAHash mgf1_hash : SHAHash.values()) {

for (SHAHash alg_hash : SHAHash.values()) {
if (mgf1_hash.name().toLowerCase().equals("sha1") &&

alg_hash.name().toLowerCase().equals("sha1")) {
continue;

}
String filename = "oaep-" + mgf1_hash.name().toLowerCase() +

(continues on next page)

268 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

"-" + alg_hash.name().toLowerCase() + ".txt";

System.out.println("Loading " + filename + "...");

TestVectorLoader loader = new TestVectorLoader();
loader.open(vector_path + filename);

TestVectorData test_data;

// load each test in the file and verify
while ((test_data = loader.loadNextTest()) != null) {

VerifyRSAOAEPSHA2 verify = new VerifyRSAOAEPSHA2(mgf1_hash, alg_
→˓hash, test_data);

verify.testDecrypt(test_data.plaintext, test_data.ciphertext);
}

System.out.println("Verifying " + filename + " completed␣
→˓successfully.");

}
}

System.out.println("All verification completed successfully");

} catch (Exception e) {
// if any exception is thrown the verification has failed
e.printStackTrace();
System.out.println("Verification Failed!");

}
}

}

Download link: VerifyRSAOAEPSHA2.java

Using the Verifier

Download and install the Java SDK. Initial verification was performed using jdk-8u77-macosx-x64.dmg.

Download the latest Bouncy Castle JAR. Initial verification was performed using bcprov-jdk15on-154.jar.

Set the -classpath to include the Bouncy Castle jar and the path to VerifyRSAOAEPSHA2.java and compile the
program.

$ javac -classpath ~/Downloads/bcprov-jdk15on-154.jar:./ VerifyRSAOAEPSHA2.java

Finally, run the program with the path to the SHA-2 vectors:

$ java -classpath ~/Downloads/bcprov-jdk15on-154.jar:./ VerifyRSAOAEPSHA2

• asymmetric/PEM_Serialization/ec_private_key.pem and asymmetric/DER_Serialization/
ec_private_key.der - Contains an Elliptic Curve key generated by OpenSSL from the curve secp256r1.

• asymmetric/PEM_Serialization/ec_private_key_encrypted.pem and asymmetric/
DER_Serialization/ec_private_key_encrypted.der- Contains the same Elliptic Curve key as
ec_private_key.pem, except that it is encrypted with AES-128 with the password “123456”.

2.10. Development 269

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.bouncycastle.org/

Cryptography Documentation, Release 43.0.0.dev1

• asymmetric/PEM_Serialization/ec_public_key.pem and asymmetric/DER_Serialization/
ec_public_key.der- Contains the public key corresponding to ec_private_key.pem, generated using
OpenSSL.

• asymmetric/PEM_Serialization/ec_public_key_rsa_delimiter.pem - Contains the public key corre-
sponding to ec_private_key.pem, but with the wrong PEM delimiter (RSA PUBLIC KEY when it should be
PUBLIC KEY).

• asymmetric/PEM_Serialization/rsa_private_key.pem - Contains an RSA 2048 bit key generated using
OpenSSL, protected by the secret “123456” with DES3 encryption.

• asymmetric/PEM_Serialization/rsa_public_key.pem and asymmetric/DER_Serialization/
rsa_public_key.der- Contains an RSA 2048 bit public generated using OpenSSL from rsa_private_key.
pem.

• asymmetric/PEM_Serialization/rsa_wrong_delimiter_public_key.pem - Contains an RSA 2048 bit
public key generated from rsa_private_key.pem, but with the wrong PEM delimiter (RSA PUBLIC KEYwhen
it should be PUBLIC KEY).

• asymmetric/PEM_Serialization/dsa_4096.pem - Contains a 4096-bit DSA private key generated using
OpenSSL.

• asymmetric/PEM_Serialization/dsaparam.pem - Contains 2048-bit DSA parameters generated using
OpenSSL; contains no keys.

• asymmetric/PEM_Serialization/dsa_private_key.pem - Contains a DSA 2048 bit key generated using
OpenSSL from the parameters in dsaparam.pem, protected by the secret “123456” with DES3 encryption.

• asymmetric/PEM_Serialization/dsa_public_key.pem and asymmetric/DER_Serialization/
dsa_public_key.der - Contains a DSA 2048 bit key generated using OpenSSL from dsa_private_key.
pem.

• asymmetric/DER_Serialization/dsa_public_key_no_params.der - Contains a DSA public key with
the optional parameters removed.

• asymmetric/DER_Serialization/dsa_public_key_invalid_bit_string.der - Contains a DSA public
key with the bit string padding value set to 2 rather than the required 0.

• asymmetric/PKCS8/unenc-dsa-pkcs8.pem and asymmetric/DER_Serialization/unenc-dsa-pkcs8.
der - Contains a DSA 1024 bit key generated using OpenSSL.

• asymmetric/PKCS8/unenc-dsa-pkcs8.pub.pem and asymmetric/DER_Serialization/
unenc-dsa-pkcs8.pub.der - Contains a DSA 2048 bit public key generated using OpenSSL from
unenc-dsa-pkcs8.pem.

• DER conversions of the GnuTLS example keys for DSA as well as the OpenSSL example key for RSA.

• DER conversions of enc-rsa-pkcs8.pem, enc2-rsa-pkcs8.pem, and unenc-rsa-pkcs8.pem.

• asymmetric/public/PKCS1/rsa.pub.pem and asymmetric/public/PKCS1/rsa.pub.der are PKCS1
conversions of the public key from asymmetric/PKCS8/unenc-rsa-pkcs8.pem using PEM and DER en-
coding.

• x509/custom/ca/ca_key.pem - An unencrypted PCKS8 secp256r1 key. It is the private key for the certificate
x509/custom/ca/ca.pem.

• pkcs12/ca/ca_key.pem - An unencrypted PCKS8 secp256r1 key. It is the private key for the certificate
pkcs12/ca/ca.pem. This key is encoded in several of the PKCS12 custom vectors.

• x509/custom/ca/rsa_key.pem - An unencrypted PCKS8 4096 bit RSA key. It is the private key for the
certificate x509/custom/ca/rsa_ca.pem.

• asymmetric/EC/compressed_points.txt - Contains compressed public points generated using OpenSSL.

270 Chapter 2. Layout

https://gitlab.com/gnutls/gnutls/-/commit/ad2061deafdd7db78fd405f9d143b0a7c579da7b
https://github.com/openssl/openssl/blob/d02b48c63a58ea4367a0e905979f140b7d090f86/test/testrsa.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/encpkcs8.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/enc2pkcs8.pem
https://gitlab.com/gnutls/gnutls/blob/f8d943b38bf74eaaa11d396112daf43cb8aa82ae/tests/pkcs8-decode/unencpkcs8.pem

Cryptography Documentation, Release 43.0.0.dev1

• asymmetric/EC/explicit_parameters_private_key.pem - Contains an EC private key with an curve de-
fined by explicit parameters.

• asymmetric/EC/explicit_parameters_wap_wsg_idm_ecid_wtls11_private_key.pem - Contains an
EC private key with over the wap-wsg-idm-ecid-wtls11 curve, encoded with explicit parameters.

• asymmetric/EC/secp128r1_private_key.pem - Contains an EC private key on the curve secp128r1.

• asymmetric/EC/sect163k1-spki.pem - Contains an EC SPKI on the curve sect163k1.

• asymmetric/EC/sect163r2-spki.pem - Contains an EC SPKI on the curve sect163r2.

• asymmetric/EC/sect233k1-spki.pem - Contains an EC SPKI on the curve sect233k1.

• asymmetric/EC/sect233r1-spki.pem - Contains an EC SPKI on the curve sect233r1.

• asymmetric/X448/x448-pkcs8-enc.pem and asymmetric/X448/x448-pkcs8-enc.der contain an X448
key encrypted with AES 256 CBC with the password password.

• asymmetric/X448/x448-pkcs8.pem and asymmetric/X448/x448-pkcs8.der contain an unencrypted
X448 key.

• asymmetric/X448/x448-pub.pem and asymmetric/X448/x448-pub.der contain an X448 public key.

• asymmetric/Ed25519/ed25519-pkcs8-enc.pem and asymmetric/Ed25519/ed25519-pkcs8-enc.der
contain an Ed25519 key encrypted with AES 256 CBC with the password password.

• asymmetric/Ed25519/ed25519-pkcs8.pem and asymmetric/Ed25519/ed25519-pkcs8.der contain an
unencrypted Ed25519 key.

• asymmetric/Ed25519/ed25519-pub.pem and asymmetric/Ed25519/ed25519-pub.der contain an
Ed25519 public key.

• asymmetric/X25519/x25519-pkcs8-enc.pem and asymmetric/X25519/x25519-pkcs8-enc.der con-
tain an X25519 key encrypted with AES 256 CBC with the password password.

• asymmetric/X25519/x25519-pkcs8.pem and asymmetric/X25519/x25519-pkcs8.der contain an unen-
crypted X25519 key.

• asymmetric/X25519/x25519-pub.pem and asymmetric/X25519/x25519-pub.der contain an X25519
public key.

• asymmetric/Ed448/ed448-pkcs8-enc.pem and asymmetric/Ed448/ed448-pkcs8-enc.der contain an
Ed448 key encrypted with AES 256 CBC with the password password.

• asymmetric/Ed448/ed448-pkcs8.pem and asymmetric/Ed448/ed448-pkcs8.der contain an unen-
crypted Ed448 key.

• asymmetric/Ed448/ed448-pub.pem and asymmetric/Ed448/ed448-pub.der contain an Ed448 public
key.

• asymmetric/PKCS8/rsa_pss_2048.pem - A 2048-bit RSA PSS key with no explicit parameters set.

• asymmetric/PKCS8/rsa_pss_2048_pub.der - The public key corresponding to asymmetric/PKCS8/
rsa_pss_2048.pem.

• asymmetric/PKCS8/rsa_pss_2048_hash.pem - A 2048-bit RSA PSS key with the hash algorithm PSS pa-
rameter set to SHA256.

• asymmetric/PKCS8/rsa_pss_2048_hash_mask.pem - A 2048-bit RSA PSS key with with the hash
(SHA256) and mask algorithm (SHA256) PSS parameters set.

• asymmetric/PKCS8/rsa_pss_2048_hash_mask_diff.pem - A 2048-bit RSA PSS key with the hash
(SHA256) and mask algorithm (SHA512) PSS parameters set.

2.10. Development 271

Cryptography Documentation, Release 43.0.0.dev1

• asymmetric/PKCS8/rsa_pss_2048_hash_mask_salt.pem - A 2048-bit RSA PSS key with the hash
(SHA256), mask algorithm (SHA256), and salt length (32) PSS parameters set.

Key exchange

• vectors/cryptography_vectors/asymmetric/DH/rfc3526.txt contains several standardized Diffie-
Hellman groups from RFC 3526.

• vectors/cryptography_vectors/asymmetric/DH/RFC5114.txt contains Diffie-Hellman examples from
appendix A.1, A.2 and A.3 of RFC 5114.

• vectors/cryptography_vectors/asymmetric/DH/vec.txt contains Diffie-Hellman examples from
botan.

• vectors/cryptography_vectors/asymmetric/DH/bad_exchange.txt contains Diffie-Hellman vector
pairs that were generated using OpenSSL DH_generate_parameters_ex and DH_generate_key.

• vectors/cryptography_vectors/asymmetric/DH/dhp.pem, vectors/cryptography_vectors/
asymmetric/DH/dhkey.pem and vectors/cryptography_vectors/asymmetric/DH/dhpub.pem
contains Diffie-Hellman parameters and key respectively. The keys were generated using OpenSSL following
DHKE guide. vectors/cryptography_vectors/asymmetric/DH/dhkey.txt contains all parameter in
text. vectors/cryptography_vectors/asymmetric/DH/dhp.der, vectors/cryptography_vectors/
asymmetric/DH/dhkey.der and vectors/cryptography_vectors/asymmetric/DH/dhpub.der
contains are the above parameters and keys in DER format.

• vectors/cryptography_vectors/asymmetric/DH/dhp_rfc5114_2.pem, vectors/
cryptography_vectors/asymmetric/DH/dhkey_rfc5114_2.pem and vectors/
cryptography_vectors/asymmetric/DH/dhpub_rfc5114_2.pem contains Diffie-Hellman parameters
and key respectively. The keys were generated using OpenSSL following DHKE guide. When creating
the parameters we added the -pkeyopt dh_rfc5114:2 option to use RFC 5114 2048 bit DH parameters
with 224 bit subgroup. vectors/cryptography_vectors/asymmetric/DH/dhkey_rfc5114_2.txt
contains all parameter in text. vectors/cryptography_vectors/asymmetric/DH/dhp_rfc5114_2.
der, vectors/cryptography_vectors/asymmetric/DH/dhkey_rfc5114_2.der and vectors/
cryptography_vectors/asymmetric/DH/dhpub_rfc5114_2.der contains are the above parameters
and keys in DER format.

• vectors/cryptography_vectors/asymmetric/DH/dh_key_256.pem contains a PEM PKCS8 encoded
DH key with a 256-bit key size.

• vectors/cryptoraphy_vectors/asymmetric/ECDH/brainpool.txt contains Brainpool vectors from
RFC 7027.

X.509

• PKITS test suite from NIST PKI Testing.

• v1_cert.pem from the OpenSSL source tree (testx509.pem).

• ecdsa_root.pem - DigiCert Global Root G3, a secp384r1 ECDSA root certificate.

• verisign-md2-root.pem - A legacy Verisign public root signed using the MD2 algorithm. This is a PEM
conversion of the root data in the NSS source tree.

• cryptography.io.pem - A leaf certificate issued by RapidSSL for the cryptography website.

• cryptography.io.old_header.pem - A leaf certificate issued by RapidSSL for the cryptography website.
This certificate uses the X509 CERTIFICATE legacy PEM header format.

272 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc3526.html
https://datatracker.ietf.org/doc/html/rfc5114.html
https://github.com/randombit/botan/blob/57789bdfc55061002b2727d0b32587612829a37c/src/tests/data/pubkey/dh.vec
https://sandilands.info/sgordon/diffie-hellman-secret-key-exchange-with-openssl
https://sandilands.info/sgordon/diffie-hellman-secret-key-exchange-with-openssl
https://datatracker.ietf.org/doc/html/rfc5114.html
https://datatracker.ietf.org/doc/html/rfc7027.html
https://csrc.nist.gov/Projects/PKI-Testing
https://github.com/openssl/openssl/blob/master/test/testx509.pem
http://cacerts.digicert.com/DigiCertGlobalRootG3.crt
https://hg.mozilla.org/projects/nss/file/25b2922cc564/security/nss/lib/ckfw/builtins/certdata.txt#l2053

Cryptography Documentation, Release 43.0.0.dev1

• cryptography.io.chain.pem - The same as cryptography.io.pem, but rapidssl_sha256_ca_g3.pem
is concatenated to the end.

• cryptography.io.with_headers.pem - The same as cryptography.io.pem, but with an unrelated (en-
crypted) private key concatenated to the end.

• cryptography.io.chain_with_garbage.pem - The same as cryptography.io.chain.pem, but with
other sections and text around it.

• cryptography.io.with_garbage.pem - The same as cryptography.io.pem, but with other sections and
text around it.

• rapidssl_sha256_ca_g3.pem - The intermediate CA that issued the cryptography.io.pem certificate.

• cryptography.io.precert.pem - A pre-certificate with the CT poison extension for the cryptography web-
site.

• cryptography-scts.pem - A leaf certificate issued by Let’s Encrypt for the cryptography website which con-
tains signed certificate timestamps.

• wildcard_san.pem - A leaf certificate issued by a public CA for langui.sh that contains wildcard entries in
the SAN extension.

• san_edipartyname.der - A DSA certificate from a Mozilla bug containing a SAN extension with an
ediPartyName general name.

• san_x400address.der - A DSA certificate from a Mozilla bug containing a SAN extension with an
x400Address general name.

• department-of-state-root.pem - The intermediary CA for the Department of State, issued by the United
States Federal Government’s Common Policy CA. Notably has a critical policy constraints extensions.

• e-trust.ru.der - A certificate from a Russian CA signed using the GOST cipher and containing numerous
unusual encodings such as NUMERICSTRING in the subject DN.

• alternate-rsa-sha1-oid.der - A certificate that uses an alternate signature OID for RSA with SHA1. This
certificate has an invalid signature.

• badssl-sct.pem - A certificate with the certificate transparency signed certificate timestamp extension.

• badssl-sct-none-hash.der - The same as badssl-sct.pem, but DER-encoded and with the SCT’s signa-
ture hash manually changed to “none” (0x00).

• badssl-sct-anonymous-sig.der - The same as badssl-sct.pem, but DER-encoded and with the SCT’s
signature algorithm manually changed to “anonymous” (0x00).

• bigoid.pem - A certificate with a rather long OID in the Certificate Policies extension. We need to make sure
we can parse long OIDs.

• wosign-bc-invalid.pem - A certificate issued by WoSign that contains a basic constraints extension with CA
set to false and a path length of zero in violation of RFC 5280.

• tls-feature-ocsp-staple.pem - A certificate issued by Let’s Encrypt that contains a TLS Feature extension
with the status_request feature (commonly known as OCSP Must-Staple).

• unique-identifier.pem - A certificate containing a distinguished name with an x500UniqueIdentifier.

• utf8-dnsname.pem - A certificate containing non-ASCII characters in the DNS name entries of the SAN ex-
tension.

• badasn1time.pem - A certificate containing an incorrectly specified UTCTime in its validity->not_after.

• letsencryptx3.pem - A subordinate certificate used by Let’s Encrypt to issue end entity certificates.

2.10. Development 273

https://bugzilla.mozilla.org/show_bug.cgi?id=233586
https://bugzilla.mozilla.org/show_bug.cgi?id=233586
https://e-trust.gosuslugi.ru/
https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

• ed25519-rfc8410.pem - A certificate containing an X25519 public key with an ed25519 signature taken from
RFC 8410.

• root-ed25519.pem - An ed25519 root certificate (ed25519 signature with ed25519 public key) from the
OpenSSL test suite. (root-ed25519.pem)

• server-ed25519-cert.pem - An ed25519 server certificate (RSA signature with ed25519 public key) from
the OpenSSL test suite. (server-ed25519-cert.pem)

• server-ed448-cert.pem - An ed448 server certificate (RSA signature with ed448 public key) from the
OpenSSL test suite. (server-ed448-cert.pem)

• accvraiz1.pem - An RSA root certificate that contains an explicitText entry with a BMPString type.

• scottishpower-bitstring-dn.pem - An ECDSA certificate that contains a subject DN with a bit string type.

• cryptography-scts-tbs-precert.der - The “to-be-signed” pre-certificate bytes from
cryptography-scts.pem, with the SCT list extension removed.

• belgian-eid-invalid-visiblestring.pem - A certificate with UTF-8 bytes in a VisibleString type.

• ee-pss-sha1-cert.pem - An RSA PSS certificate using a SHA1 signature and SHA1 for MGF1 from the
OpenSSL test suite.

Custom X.509 Vectors

• invalid_version.pem - Contains an RSA 2048 bit certificate with the X.509 version field set to 0x7.

• post2000utctime.pem - Contains an RSA 2048 bit certificate with the notBefore and notAfter fields en-
coded as post-2000 UTCTime.

• dsa_selfsigned_ca.pem - Contains a DSA self-signed CA certificate generated using OpenSSL.

• ec_no_named_curve.pem - Contains an ECDSA certificate that does not have an embedded OID defining the
curve.

• all_supported_names.pem - An RSA 2048 bit certificate generated using OpenSSL that contains a subject
and issuer that have two of each supported attribute type from RFC 5280.

• unsupported_subject_name.pem - An RSA 2048 bit self-signed CA certificate generated using OpenSSL
that contains the unsupported “initials” name.

• utf8_common_name.pem - An RSA 2048 bit self-signed CA certificate generated using OpenSSL that contains
a UTF8String common name with the value “We heart UTF8!™”.

• invalid_utf8_common_name.pem - A certificate that contains a UTF8String common name with an invalid
UTF-8 byte sequence.

• two_basic_constraints.pem - An RSA 2048 bit self-signed certificate containing two basic constraints ex-
tensions.

• basic_constraints_not_critical.pem - An RSA 2048 bit self-signed certificate containing a basic con-
straints extension that is not marked as critical.

• bc_path_length_zero.pem - An RSA 2048 bit self-signed certificate containing a basic constraints extension
with a path length of zero.

• unsupported_extension.pem - An RSA 2048 bit self-signed certificate containing an unsupported extension
type. The OID was encoded as “1.2.3.4” with an extnValue of “value”.

• unsupported_extension_2.pem - A secp256r1 certificate containing two unsupported extensions. The
OIDs are 1.3.6.1.4.1.41482.2 with an extnValue of 1.3.6.1.4.1.41482.1.2 and 1.3.6.1.4.1.
45724.2.1.1 with an extnValue of \x03\x02\x040

274 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc8410.html
https://github.com/openssl/openssl/blob/2a1e2fe145c6eb8e75aa2e1b3a8c3a49384b2852/test/certs/root-ed25519.pem
https://github.com/openssl/openssl/blob/2a1e2fe145c6eb8e75aa2e1b3a8c3a49384b2852/test/certs/server-ed25519-cert.pem
https://github.com/openssl/openssl/blob/2a1e2fe145c6eb8e75aa2e1b3a8c3a49384b2852/test/certs/server-ed448-cert.pem
https://datatracker.ietf.org/doc/html/rfc5280.html

Cryptography Documentation, Release 43.0.0.dev1

• unsupported_extension_critical.pem - An RSA 2048 bit self-signed certificate containing an unsup-
ported extension type marked critical. The OID was encoded as “1.2.3.4” with an extnValue of “value”.

• san_email_dns_ip_dirname_uri.pem - An RSA 2048 bit self-signed certificate containing a subject alterna-
tive name extension with the following general names: rfc822Name, dNSName, iPAddress, directoryName,
and uniformResourceIdentifier.

• san_empty_hostname.pem - An RSA 2048 bit self-signed certificate containing a subject alternative extension
with an empty dNSName general name.

• san_other_name.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name extension
with the otherName general name.

• san_registered_id.pem - An RSA 1024 bit certificate containing a subject alternative name extension with
the registeredID general name.

• all_key_usages.pem - An RSA 2048 bit self-signed certificate containing a key usage extension with all nine
purposes set to true.

• extended_key_usage.pem - An RSA 2048 bit self-signed certificate containing an extended key usage exten-
sion with eight usages.

• san_idna_names.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name exten-
sion with rfc822Name, dNSName, and uniformResourceIdentifier general names with IDNA (RFC 5895)
encoding.

• san_wildcard_idna.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name ex-
tension with a dNSName general name with a wildcard IDNA (RFC 5895) domain.

• san_idna2003_dnsname.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name
extension with an IDNA 2003 (RFC 3490) dNSName.

• san_rfc822_names.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name exten-
sion with various rfc822Name values.

• san_rfc822_idna.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name exten-
sion with an IDNA rfc822Name.

• san_uri_with_port.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name ex-
tension with various uniformResourceIdentifier values.

• san_ipaddr.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name extension with
an iPAddress value.

• san_dirname.pem - An RSA 2048 bit self-signed certificate containing a subject alternative name extension
with a directoryName value.

• inhibit_any_policy_5.pem - An RSA 2048 bit self-signed certificate containing an inhibit any policy exten-
sion with the value 5.

• inhibit_any_policy_negative.pem - An RSA 2048 bit self-signed certificate containing an inhibit any
policy extension with the value -1.

• authority_key_identifier.pem - An RSA 2048 bit self-signed certificate containing an authority key iden-
tifier extension with key identifier, authority certificate issuer, and authority certificate serial number fields.

• authority_key_identifier_no_keyid.pem - An RSA 2048 bit self-signed certificate containing an author-
ity key identifier extension with authority certificate issuer and authority certificate serial number fields.

• aia_ocsp_ca_issuers.pem - An RSA 2048 bit self-signed certificate containing an authority information
access extension with two OCSP and one CA issuers entry.

• aia_ocsp.pem - An RSA 2048 bit self-signed certificate containing an authority information access extension
with an OCSP entry.

2.10. Development 275

https://datatracker.ietf.org/doc/html/rfc5895.html
https://datatracker.ietf.org/doc/html/rfc5895.html
https://datatracker.ietf.org/doc/html/rfc3490.html

Cryptography Documentation, Release 43.0.0.dev1

• aia_ca_issuers.pem - An RSA 2048 bit self-signed certificate containing an authority information access
extension with a CA issuers entry.

• cdp_empty_hostname.pem - An RSA 2048 bit self-signed certificate containing a CRL distribution point ex-
tension with fullName URI without a hostname.

• cdp_fullname_reasons_crl_issuer.pem - An RSA 1024 bit certificate containing a CRL distribution points
extension with fullName, cRLIssuer, and reasons data.

• cdp_crl_issuer.pem - An RSA 1024 bit certificate containing a CRL distribution points extension with
cRLIssuer data.

• cdp_all_reasons.pem - An RSA 1024 bit certificate containing a CRL distribution points extension with all
reasons bits set.

• cdp_reason_aa_compromise.pem - An RSA 1024 bit certificate containing a CRL distribution points exten-
sion with the AACompromise reasons bit set.

• nc_permitted_excluded.pem - An RSA 2048 bit self-signed certificate containing a name constraints exten-
sion with both permitted and excluded elements. Contains IPv4 and IPv6 addresses with network mask as well
as dNSName with a leading period.

• nc_permitted_excluded_2.pem - An RSA 2048 bit self-signed certificate containing a name constraints ex-
tension with both permitted and excluded elements. Unlike nc_permitted_excluded.pem, the general names
do not contain any name constraints specific values.

• nc_permitted.pem - An RSA 2048 bit self-signed certificate containing a name constraints extension with
permitted elements.

• nc_permitted_2.pem - An RSA 2048 bit self-signed certificate containing a name constraints extension with
permitted elements that do not contain any name constraints specific values.

• nc_excluded.pem - An RSA 2048 bit self-signed certificate containing a name constraints extension with ex-
cluded elements.

• nc_invalid_ip_netmask.pem - An RSA 2048 bit self-signed certificate containing a name constraints exten-
sion with a permitted element that has an IPv6 IP and an invalid network mask.

• nc_invalid_ip4_netmask.der - An RSA 2048 bit self-signed certificate containing a name constraints exten-
sion with a permitted element that has an IPv4 IP and an invalid network mask. The signature on this certificate
is invalid.

• nc_single_ip_netmask.pem - An RSA 2048 bit self-signed certificate containing a name constraints extension
with a permitted element that has two IPs with /32 and /128 network masks.

• nc_ip_invalid_length.pem - An RSA 2048 bit self-signed certificate containing a name constraints extension
with a permitted element that has an invalid length (33 bytes instead of 32) for an IPv6 address with network
mask. The signature on this certificate is invalid.

• cp_user_notice_with_notice_reference.pem - An RSA 2048 bit self-signed certificate containing a cer-
tificate policies extension with a notice reference in the user notice.

• cp_user_notice_with_explicit_text.pem - An RSA 2048 bit self-signed certificate containing a certifi-
cate policies extension with explicit text and no notice reference.

• cp_cps_uri.pem - An RSA 2048 bit self-signed certificate containing a certificate policies extension with a
CPS URI and no user notice.

• cp_user_notice_no_explicit_text.pem - An RSA 2048 bit self-signed certificate containing a certificate
policies extension with a user notice with no explicit text.

• cp_invalid.pem - An RSA 2048 bit self-signed certificate containing a certificate policies extension with in-
valid data. The policyQualifierId is for id-qt-unotice but the value is an id-qt-cps ASN.1 structure.

276 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

• cp_invalid2.der - An RSA 2048 bit self-signed certificate containing a certificate policies extension with
invalid data. The policyQualifierId is for id-qt-cps but the value is an id-qt-unotice ASN.1 structure.
The signature on this certificate is invalid.

• ian_uri.pem - An RSA 2048 bit certificate containing an issuer alternative name extension with a URI general
name.

• ocsp_nocheck.pem - An RSA 2048 bit self-signed certificate containing an OCSPNoCheck extension.

• pc_inhibit_require.pem - An RSA 2048 bit self-signed certificate containing a policy constraints extension
with both inhibit policy mapping and require explicit policy elements.

• pc_inhibit.pem - An RSA 2048 bit self-signed certificate containing a policy constraints extension with an
inhibit policy mapping element.

• pc_require.pem - An RSA 2048 bit self-signed certificate containing a policy constraints extension with a
require explicit policy element.

• unsupported_subject_public_key_info.pem - A certificate whose public key is an unknown OID (1.3.
6.1.4.1.8432.1.1.2).

• policy_constraints_explicit.pem - A self-signed certificate containing a policyConstraints extension
with a requireExplicitPolicy value.

• freshestcrl.pem - A self-signed certificate containing a freshestCRL extension.

• sia.pem - An RSA 2048 bit self-signed certificate containing a subject information access extension with both
a CA repository entry and a custom OID entry.

• ca/ca.pem - A self-signed certificate with basicConstraints set to true. Its private key is ca/ca_key.pem.

• pkcs12/ca/ca.pem - A self-signed certificate with basicConstraints set to true. Its private key is pkcs12/
ca/ca_key.pem. This key is encoded in several of the PKCS12 custom vectors.

• negative_serial.pem - A certificate with a serial number that is a negative number.

• rsa_pss.pem - A certificate with an RSA PSS signature.

• root-ed448.pem - An ed448 self-signed CA certificate using ed448-pkcs8.pem as key.

• ca/rsa_ca.pem - A self-signed RSA certificate with basicConstraints set to true. Its private key is ca/
rsa_key.pem.

• ca/rsae_ca.pem - A self-signed RSA certificate using a (non-PSS) RSA public key and a RSA PSS signature.
Its private key is ca/rsa_key.pem.

• invalid-sct-version.der - A certificate with an SCT with an unknown version.

• invalid-sct-length.der - A certificate with an SCT with an internal length greater than the amount of data.

• bad_country.pem - A certificate with country name and jurisdiction country name values in its subject and
issuer distinguished names which are longer than 2 characters.

• rsa_pss_cert.pem - A self-signed certificate with an RSA PSS signature with asymmetric/PKCS8/
rsa_pss_2048.pem as its key.

• rsa_pss_cert_invalid_mgf.der - A self-signed certificate with an invalid RSA PSS signature that has a
non-MGF1 OID for its mask generation function in the signature algorithm.

• rsa_pss_cert_no_sig_params.der - A self-signed certificate with an invalid RSA PSS signature algorithm
that is missing signature parameters for PSS.

• rsa_pss_cert_unsupported_mgf_hash.der - A self-signed certificate with an unsupported MGF1 hash al-
gorithm in the signature algorithm.

2.10. Development 277

Cryptography Documentation, Release 43.0.0.dev1

• long-form-name-attribute.pem - A certificate with subject and issuer names containing attributes
whose value’s tag is encoded in long-form.

• mismatch_inner_outer_sig_algorithm.der - A leaf certificate derived from x509/cryptography.io.
pem but modifying the tbs_cert.signature_algorithm OID to not match the outer signature algorithm
OID.

• ms-certificate-template.pem - A certificate with a msCertificateTemplate extension.

• rsa_pss_sha256_no_null.pem - A certificate with an RSA PSS signature with no encoded NULL for the PSS
hash algorithm parameters. This certificate was generated by LibreSSL.

• ecdsa_null_alg.pem - A certificate with an ECDSA signature with NULL algorithm parameters. This encoding
is invalid, but was generated by Java 11.

• dsa_null_alg_params.pem - A certificate with a DSA signature with NULL algorithm parameters. This en-
coding is invalid, but was generated by Java 20.

Custom X.509 Request Vectors

• dsa_sha1.pem and dsa_sha1.der - Contain a certificate request using 1024-bit DSA parameters and SHA1
generated using OpenSSL.

• rsa_md4.pem and rsa_md4.der - Contain a certificate request using 2048 bit RSA and MD4 generated using
OpenSSL.

• rsa_sha1.pem and rsa_sha1.der - Contain a certificate request using 2048 bit RSA and SHA1 generated
using OpenSSL.

• rsa_sha256.pem and rsa_sha256.der - Contain a certificate request using 2048 bit RSA and SHA256 gen-
erated using OpenSSL.

• ec_sha256.pem and ec_sha256.der - Contain a certificate request using EC (secp384r1) and SHA256 gen-
erated using OpenSSL.

• ec_sha256_old_header.pem - Identical to ec_sha256.pem, but uses the -----BEGIN NEW CERTIFICATE
REQUEST----- legacy PEM header format.

• san_rsa_sha1.pem and san_rsa_sha1.der - Contain a certificate request using RSA and SHA1 with a subject
alternative name extension generated using OpenSSL.

• two_basic_constraints.pem - A certificate signing request for an RSA 2048 bit key containing two basic
constraints extensions. The signature on this CSR is invalid.

• unsupported_extension.pem - A certificate signing request for an RSA 2048 bit key containing containing
an unsupported extension type. The OID was encoded as “1.2.3.4” with an extnValue of “value”. The signature
on this CSR is invalid.

• unsupported_extension_critical.pem - A certificate signing request for an RSA 2048 bit key containing
containing an unsupported extension type marked critical. The OID was encoded as “1.2.3.4” with an extnValue
of “value”. The signature on this CSR is invalid.

• basic_constraints.pem - A certificate signing request for an RSA 2048 bit key containing a basic constraints
extension marked as critical. The signature on this CSR is invalid.

• invalid_signature.pem - A certificate signing request for an RSA 1024 bit key containing an invalid signature
with correct padding.

• challenge.pem - A certificate signing request for an RSA 2048 bit key containing a challenge password.

• challenge-invalid.der - A certificate signing request for an RSA 2048 bit key containing a challenge pass-
word attribute that has been encoded as an ASN.1 integer rather than a string.

278 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

• challenge-unstructured.pem - A certificate signing request for an RSA 2048 bit key containing a challenge
password attribute and an unstructured name attribute.

• challenge-multi-valued.der - A certificate signing request for an RSA 2048 bit key containing a challenge
password attribute with two values inside the ASN.1 set. The signature on this request is invalid.

• freeipa-bad-critical.pem - A certificate signing request where the extensions value has a critical value
of False explicitly encoded.

• bad-version.pem - A certificate signing request where the version is invalid.

• long-form-attribute.pem - A certificate signing request containing an attribute whose value’s tag is encoded
in the long form.

Custom X.509 Certificate Revocation List Vectors

• crl_all_reasons.pem - Contains a CRL with 12 revoked certificates, whose serials match their list position.
It includes one revocation without any entry extensions, 10 revocations with every supported reason code and one
revocation with an unsupported, non-critical entry extension with the OID value set to “1.2.3.4”. The signature
on this CRL is invalid.

• crl_dup_entry_ext.pem - Contains a CRL with one revocation which has a duplicate entry extension. The
signature on this CRL is invalid.

• crl_md2_unknown_crit_entry_ext.pem - Contains a CRL with one revocation which contains an unsup-
ported critical entry extension with the OID value set to “1.2.3.4”. The CRL uses an unsupported MD2 signature
algorithm, and the signature on this CRL is invalid.

• crl_unsupported_reason.pem - Contains a CRL with one revocation which has an unsupported reason code.
The signature on this CRL is invalid.

• crl_inval_cert_issuer_entry_ext.pem - Contains a CRL with one revocation which has one entry exten-
sion for certificate issuer with an empty value. The signature on this CRL is invalid.

• crl_empty.pem - Contains a CRL with no revoked certificates.

• crl_empty_no_sequence.der - Contains a CRL with no revoked certificates and the optional ASN.1 sequence
for revoked certificates is omitted.

• crl_ian_aia_aki.pem - Contains a CRL with IssuerAlternativeName, AuthorityInformationAccess,
AuthorityKeyIdentifier and CRLNumber extensions.

• valid_signature_crl.pem - Contains a CRL with a valid signature.

• valid_signature_cert.pem - Contains a cert whose public key corresponds to the private key that produced
the signature for valid_signature_crl.pem.

• invalid_signature_crl.pem - Contains a CRL with the last signature byte incremented by 1 to produce an
invalid signature.

• invalid_signature_cert.pem - Contains a cert whose public key corresponds to the private key that pro-
duced the signature for invalid_signature_crl.pem.

• crl_delta_crl_indicator.pem - Contains a CRL with the DeltaCRLIndicator extension.

• crl_idp_fullname_only.pem - Contains a CRL with an IssuingDistributionPoints extension with only
a fullname for the distribution point.

• crl_idp_only_ca.pem - Contains a CRL with an IssuingDistributionPoints extension that is only valid
for CA certificate revocation.

2.10. Development 279

Cryptography Documentation, Release 43.0.0.dev1

• crl_idp_fullname_only_aa.pem - Contains a CRL with an IssuingDistributionPoints extension that
sets a fullname and is only valid for attribute certificate revocation.

• crl_idp_fullname_only_user.pem - Contains a CRL with an IssuingDistributionPoints extension
that sets a fullname and is only valid for user certificate revocation.

• crl_idp_fullname_indirect_crl.pem - Contains a CRL with an IssuingDistributionPoints exten-
sion that sets a fullname and the indirect CRL flag.

• crl_idp_reasons_only.pem - Contains a CRL with an IssuingDistributionPoints extension that is only
valid for revocations with the keyCompromise reason.

• crl_idp_relative_user_all_reasons.pem - Contains a CRL with an IssuingDistributionPoints ex-
tension that sets all revocation reasons as allowed.

• crl_idp_relativename_only.pem - Contains a CRL with an IssuingDistributionPoints extension with
only a relativename for the distribution point.

• crl_unrecognized_extension.der - Contains a CRL containing an unsupported extension type. The OID
was encoded as “1.2.3.4.5” with an extnValue of abcdef.

• crl_invalid_time.der - Contains a CRL with an invalid UTCTime value in thisUpdate. The signature on
this CRL is invalid.

• crl_no_next_time.pem - Contains a CRL with no nextUpdate value. The signature on this CRL is invalid.

• crl_bad_version.pem - Contains a CRL with an invalid version.

• crl_almost_10k.pem - Contains a CRL with 9,999 entries.

• crl_inner_outer_mismatch.der - A CRL created from valid_signature_crl.pem but with a mis-
matched inner and outer signature algorithm. The signature on this CRL is invalid.

X.509 OCSP Test Vectors

• x509/ocsp/resp-sha256.der - An OCSP response for cryptography.io with a SHA256 signature.

• x509/ocsp/resp-unauthorized.der - An OCSP response with an unauthorized status.

• x509/ocsp/resp-revoked.der - An OCSP response for revoked.badssl.com with a revoked status.

• x509/ocsp/resp-delegate-unknown-cert.der - An OCSP response for an unknown cert from AC
Camerafirma. This response also contains a delegate certificate.

• x509/ocsp/resp-responder-key-hash.der - An OCSP response from the DigiCert OCSP responder that
uses a key hash for the responder ID.

• x509/ocsp/resp-revoked-reason.der - An OCSP response from the QuoVadis OCSP responder that con-
tains a revoked certificate with a revocation reason.

• x509/ocsp/resp-revoked-no-next-update.der - An OCSP response that contains a revoked certificate
and no nextUpdate value.

• x509/ocsp/resp-invalid-signature-oid.der - An OCSP response that was modified to contain an MD2
signature algorithm object identifier.

• x509/ocsp/resp-single-extension-reason.der - An OCSP response that contains a CRLReason single
extension.

• x509/ocsp/resp-sct-extension.der - An OCSP response containing a CT Certificate SCTs single ex-
tension, from the SwissSign OCSP responder.

• x509/ocsp/ocsp-army.deps.mil-resp.der - An OCSP response containing multiple SINGLERESP values.

280 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

• x509/ocsp/resp-response-type-unknown-oid.der - An OCSP response with an unknown OID for re-
sponse type. The signature on this response is invalid.

• x509/ocsp/resp-successful-no-response-bytes.der - An OCSP request with a successful response
type but the response bytes are missing.

• x509/ocsp/resp-unknown-response-status.der - An OCSP response with an unknown response status.

Custom X.509 OCSP Test Vectors

• x509/ocsp/req-sha1.der - An OCSP request containing a single request and using SHA1 as the hash algo-
rithm.

• x509/ocsp/req-multi-sha1.der - An OCSP request containing multiple requests.

• x509/ocsp/req-invalid-hash-alg.der - An OCSP request containing an invalid hash algorithm OID.

• x509/ocsp/req-ext-nonce.der - An OCSP request containing a nonce extension.

• x509/ocsp/req-ext-unknown-oid.der - An OCSP request containing an extension with an unknown OID.

• x509/ocsp/req-duplicate-ext.der - An OCSP request with duplicate extensions.

• x509/ocsp/resp-unknown-extension.der - An OCSP response containing an extension with an unknown
OID.

• x509/ocsp/resp-unknown-hash-alg.der - An OCSP response containing an invalid hash algorithm OID.

• x509/ocsp/req-acceptable-responses.der - An OCSP request containing an acceptable responses exten-
sion.

Custom PKCS12 Test Vectors

• pkcs12/cert-key-aes256cbc.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key
(pkcs12/ca/ca_key.pem) both encrypted with AES 256 CBC with the password cryptography.

• pkcs12/cert-none-key-none.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key
(pkcs12/ca/ca_key.pem) with no encryption. The password (used for integrity checking only) is
cryptography.

• pkcs12/cert-rc2-key-3des.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) encrypted with
RC2 and key (pkcs12/ca/ca_key.pem) encrypted via 3DES with the password cryptography.

• pkcs12/no-password.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/ca/
ca_key.pem) with no encryption and no password.

• pkcs12/no-cert-key-aes256cbc.p12 - A PKCS12 file containing a key (pkcs12/ca/ca_key.pem) en-
crypted via AES 256 CBC with the password cryptography and no certificate.

• pkcs12/cert-aes256cbc-no-key.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) encrypted
via AES 256 CBC with the password cryptography and no private key.

• pkcs12/no-name-no-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key
(pkcs12/ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem).

• pkcs12/name-all-no-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem) with friendly name name, as well as two additional certificates (x509/cryptography.io.
pem and x509/letsencryptx3.pem) with friendly names name2 and name3, respectively.

2.10. Development 281

Cryptography Documentation, Release 43.0.0.dev1

• pkcs12/name-1-no-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/ca/
ca_key.pem) with friendly name name, as well as two additional certificates (x509/cryptography.io.pem
and x509/letsencryptx3.pem).

• pkcs12/name-2-3-no-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key
(pkcs12/ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem) with friendly names name2 and name3, respectively.

• pkcs12/name-2-no-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem), the first having friendly name name2.

• pkcs12/name-3-no-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem), the latter having friendly name name3.

• pkcs12/name-unicode-no-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key
(pkcs12/ca/ca_key.pem) with friendly name , as well as two additional certificates (x509/cryptography.
io.pem and x509/letsencryptx3.pem) with friendly names ä and ç, respectively.

• pkcs12/no-name-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem), encrypted via AES 256 CBC with the password cryptography.

• pkcs12/name-all-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/ca/
ca_key.pem) with friendly name name, as well as two additional certificates (x509/cryptography.io.pem
and x509/letsencryptx3.pem) with friendly names name2 and name3 respectively, encrypted via AES 256
CBC with the password cryptography.

• pkcs12/name-1-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/ca/
ca_key.pem) with friendly name name, as well as two additional certificates (x509/cryptography.io.pem
and x509/letsencryptx3.pem), encrypted via AES 256 CBC with the password cryptography.

• pkcs12/name-2-3-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem) with friendly names name2` and ``name3 respectively, encrypted via AES 256 CBC
with the password cryptography.

• pkcs12/name-2-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem), the first having friendly name name2, encrypted via AES 256 CBC with the password
cryptography.

• pkcs12/name-3-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem), as well as two additional certificates (x509/cryptography.io.pem and x509/
letsencryptx3.pem), the latter having friendly name name2, encrypted via AES 256 CBC with the password
cryptography.

• pkcs12/name-unicode-pwd.p12 - A PKCS12 file containing a cert (pkcs12/ca/ca.pem) and key (pkcs12/
ca/ca_key.pem) with friendly name , as well as two additional certificates (x509/cryptography.io.pem and
x509/letsencryptx3.pem) with friendly names ä and ç respectively, encrypted via AES 256 CBC with the
password cryptography.

• pkcs12/no-cert-no-name-no-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.
pem and x509/letsencryptx3.pem).

• pkcs12/no-cert-name-all-no-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.
pem and x509/letsencryptx3.pem) with friendly names name2 and name3, respectively.

• pkcs12/no-cert-name-2-no-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.pem
and x509/letsencryptx3.pem), the first having friendly name name2.

282 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

• pkcs12/no-cert-name-3-no-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.pem
and x509/letsencryptx3.pem), the second having friendly name name3.

• pkcs12/no-cert-name-unicode-no-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.
io.pem and x509/letsencryptx3.pem) with friendly names and ï, respectively.

• pkcs12/no-cert-no-name-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.pem
and x509/letsencryptx3.pem), encrypted via AES 256 CBC with the password cryptography.

• pkcs12/no-cert-name-all-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.pem
and x509/letsencryptx3.pem) with friendly names name2 and name3, respectively, encrypted via AES 256
CBC with the password cryptography.

• pkcs12/no-cert-name-2-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.pem
and x509/letsencryptx3.pem), the first with friendly name name2, encrypted via AES 256 CBC with the
password cryptography.

• pkcs12/no-cert-name-3-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.pem
and x509/letsencryptx3.pem), the second with friendly name name3, encrypted via AES 256 CBC with the
password cryptography.

• pkcs12/no-cert-name-unicode-pwd.p12 - A PKCS12 file containing two certs (x509/cryptography.io.
pem and x509/letsencryptx3.pem) with friendly names and ï, respectively, encrypted via AES 256 CBC
with the password cryptography.

Custom PKCS7 Test Vectors

• pkcs7/isrg.pem - A PEM encoded PKCS7 file containing the ISRG X1 root CA.

• pkcs7/amazon-roots.p7b - A BER encoded PCKS7 file containing Amazon Root CA 2 and 3 generated by
Apple Keychain.

• pkcs7/amazon-roots.der - A DER encoded PCKS7 file containing Amazon Root CA 2 and 3 generated by
OpenSSL.

• pkcs7/enveloped.pem - A PEM encoded PKCS7 file with enveloped data.

Custom OpenSSH Test Vectors

• ed25519-aesgcm-psw.key and ed25519-aesgcm-psw.key.pub generated by exporting an Ed25519 key
from 1password 8with the password “password”. This key is encrypted using the aes256-gcm@openssh.com
algorithm.

Generated by asymmetric/OpenSSH/gen.sh using command-line tools from OpenSSH_7.6p1 package.

• dsa-nopsw.key, dsa-nopsw.key.pub, dsa-nopsw.key-cert.pub - DSA-1024 private key; and correspond-
ing public key in plain format and with self-signed certificate.

• dsa-psw.key, dsa-psw.key.pub - Password-protected DSA-1024 private key and corresponding public key.
Password is “password”.

• ecdsa-nopsw.key, ecdsa-nopsw.key.pub, ecdsa-nopsw.key-cert.pub - SECP256R1 private key; and
corresponding public key in plain format and with self-signed certificate.

• ecdsa-psw.key, ecdsa-psw.key.pub - Password-protected SECP384R1 private key and corresponding pub-
lic key. Password is “password”.

• ed25519-nopsw.key, ed25519-nopsw.key.pub, ed25519-nopsw.key-cert.pub - Ed25519 private key;
and corresponding public key in plain format and with self-signed certificate.

2.10. Development 283

Cryptography Documentation, Release 43.0.0.dev1

• ed25519-psw.key, ed25519-psw.key.pub - Password-protected Ed25519 private key and corresponding
public key. Password is “password”.

• rsa-nopsw.key, rsa-nopsw.key.pub, rsa-nopsw.key-cert.pub - RSA-2048 private key; and correspond-
ing public key in plain format and with self-signed certificate.

• rsa-psw.key, rsa-psw.key.pub - Password-protected RSA-2048 private key and corresponding public key.
Password is “password”.

Custom OpenSSH Certificate Test Vectors

• p256-p256-duplicate-extension.pub - A certificate with a duplicate extension.

• p256-p256-non-lexical-extensions.pub - A certificate with extensions in non-lexical order.

• p256-p256-duplicate-crit-opts.pub - A certificate with a duplicate critical option.

• p256-p256-non-lexical-crit-opts.pub - A certificate with critical options in non-lexical order.

• p256-ed25519-non-singular-crit-opt-val.pub - A certificate with a critical option that contains more
than one value.

• p256-ed25519-non-singular-ext-val.pub - A certificate with an extension that contains more than one
value.

• dsa-p256.pub - A certificate with a DSA public key signed by a P256 CA.

• p256-dsa.pub - A certificate with a P256 public key signed by a DSA CA.

• p256-p256-broken-signature-key-type.pub - A certificate with a P256 public key signed by a P256 CA,
but the signature key type is set to rsa-sha2-512.

• p256-p256-empty-principals.pub - A certificate with a P256 public key signed by a P256 CA with an empty
valid principals list.

• p256-p256-invalid-cert-type.pub - A certificate with a P256 public key signed by a P256 CA with an
invalid certificate type.

• p256-p384.pub - A certificate with a P256 public key signed by a P384 CA.

• p256-p521.pub - A certificate with a P256 public key signed by a P521 CA.

• p256-rsa-sha1.pub - A certificate with a P256 public key signed by a RSA CA using SHA1.

• p256-rsa-sha256.pub - A certificate with a P256 public key signed by a RSA CA using SHA256.

• p256-rsa-sha512.pub - A certificate with a P256 public key signed by a RSA CA using SHA512.

Hashes

• MD5 from RFC 1321.

• RIPEMD160 from the RIPEMD website.

• SHA1 from NIST CAVP.

• SHA2 (224, 256, 384, 512, 512/224, 512/256) from NIST CAVP.

• SHA3 (224, 256, 384, 512) from NIST CAVP.

• SHAKE (128, 256) from NIST CAVP.

• Blake2s and Blake2b from OpenSSL test/evptests.txt.

284 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc1321.html
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://github.com/openssl/openssl/blob/2d0b44126763f989a4cbffbffe9d0c7518158bb7/test/evptests.txt

Cryptography Documentation, Release 43.0.0.dev1

HMAC

• HMAC-MD5 from RFC 2202.

• HMAC-SHA1 from RFC 2202.

• HMAC-RIPEMD160 from RFC 2286.

• HMAC-SHA2 (224, 256, 384, 512) from RFC 4231.

Key derivation functions

• HKDF (SHA1, SHA256) from RFC 5869.

• PBKDF2 (HMAC-SHA1) from RFC 6070.

• scrypt from the draft RFC.

• X9.63 KDF from NIST CAVP.

• SP 800-108 Counter Mode KDF (HMAC-SHA1, HMAC-SHA224, HMAC-SHA256, HMAC-SHA384, HMAC-
SHA512) from NIST CAVP.

Key wrapping

• AES key wrap (AESKW) and 3DES key wrap test vectors from NIST CAVP.

• AES key wrap with padding vectors from Botan’s key wrap vectors.

Recipes

• Fernet from its specification repository.

Symmetric ciphers

• AES (CBC, CFB, ECB, GCM, OFB, CCM) from NIST CAVP.

• AES CTR from RFC 3686.

• AES-GCM-SIV (KEY-LENGTH: 128, 256) from OpenSSL’s evpciph_aes_gcm_siv.txt.

• AES-GCM-SIV (KEY-LENGTH: 192) generated by this project. See AES-GCM-SIV vector creation

• AES OCB3 from RFC 7253, dkg’s additional OCB3 vectors, and OpenSSL’s OCB vectors.

• AES SIV from OpenSSL’s evpciph_aes_siv.txt.

• 3DES (CBC, CFB, ECB, OFB) from NIST CAVP.

• ARC4 (KEY-LENGTH: 40, 56, 64, 80, 128, 192, 256) from RFC 6229.

• ARC4 (KEY-LENGTH: 160) generated by this project. See: ARC4 vector creation

• Blowfish (CBC, CFB, ECB, OFB) from Bruce Schneier’s vectors.

• Camellia (ECB) from NTT’s Camellia page as linked by CRYPTREC.

• Camellia (CBC, CFB, OFB) from OpenSSL’s test vectors.

• CAST5 (ECB) from RFC 2144.

2.10. Development 285

https://datatracker.ietf.org/doc/html/rfc2202.html
https://datatracker.ietf.org/doc/html/rfc2202.html
https://datatracker.ietf.org/doc/html/rfc2286.html
https://datatracker.ietf.org/doc/html/rfc4231.html
https://datatracker.ietf.org/doc/html/rfc5869.html
https://datatracker.ietf.org/doc/html/rfc6070.html
https://datatracker.ietf.org/doc/html/draft-josefsson-scrypt-kdf-01
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://github.com/randombit/botan/blob/737f33c09a18500e044dca3e2ae13bd2c08bafdd/src/tests/data/keywrap/nist_key_wrap.vec
https://github.com/fernet/spec
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://datatracker.ietf.org/doc/html/rfc3686.html
https://github.com/openssl/openssl/blob/a2b1ab6100d5f0fb50b61d241471eea087415632/test/recipes/30-test_evp_data/evpciph_aes_gcm_siv.txt
https://datatracker.ietf.org/doc/html/rfc7253.html
https://gitlab.com/dkg/ocb-test-vectors
https://github.com/openssl/openssl/commit/2f19ab18a29cf9c82cdd68bc8c7e5be5061b19be
https://github.com/openssl/openssl/blob/d830526c711074fdcd82c70c24c31444366a1ed8/test/recipes/30-test_evp_data/evpciph_aes_siv.txt
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://datatracker.ietf.org/doc/html/rfc6229.html
https://www.schneier.com/wp-content/uploads/2015/12/vectors-2.txt
https://info.isl.ntt.co.jp/crypt/eng/camellia/
https://www.cryptrec.go.jp
https://github.com/openssl/openssl/blob/97cf1f6c2854a3a955fd7dd3a1f113deba00c9ef/crypto/evp/evptests.txt#L232
https://datatracker.ietf.org/doc/html/rfc2144.html

Cryptography Documentation, Release 43.0.0.dev1

• CAST5 (CBC, CFB, OFB) generated by this project. See: CAST5 vector creation

• ChaCha20 from RFC 7539 and generated by this project. See: ChaCha20 vector creation

• ChaCha20Poly1305 from RFC 7539, OpenSSL’s evpciph.txt, and the BoringSSL ChaCha20Poly1305 tests.

• IDEA (ECB) from the NESSIE IDEA vectors created by NESSIE.

• IDEA (CBC, CFB, OFB) generated by this project. See: IDEA vector creation

• RC2-128-CBC generated by this project. See: RC2 vector creation

• SEED (ECB) from RFC 4269.

• SEED (CBC) from RFC 4196.

• SEED (CFB, OFB) generated by this project. See: SEED vector creation

• SM4 (CBC, CFB, CTR, ECB, OFB) from draft-ribose-cfrg-sm4-10.

• SM4 (GCM) from RFC 8998.

Two factor authentication

• HOTP from RFC 4226

• TOTP from RFC 6238 (Note that an errata for the test vectors in RFC 6238 exists)

CMAC

• AES-128, AES-192, AES-256, 3DES from NIST SP-800-38B

Poly1305

• Test vectors from RFC 7539.

Creating test vectors

When official vectors are unavailable cryptography may choose to build its own using existing vectors as source
material.

Created Vectors

AES-GCM-SIV vector creation

This page documents the code that was used to generate the AES-GCM-SIV test vectors for key lengths not available
in the OpenSSL test vectors. All the vectors were generated using OpenSSL and verified with Rust.

286 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc7539.html
https://datatracker.ietf.org/doc/html/rfc7539.html
https://github.com/openssl/openssl/blob/5a7bc0be97dee9ac715897fe8180a08e211bc6ea/test/evpciph.txt#L2362
https://boringssl.googlesource.com/boringssl/+/2e2a226ac9201ac411a84b5e79ac3a7333d8e1c9/crypto/cipher_extra/test/chacha20_poly1305_tests.txt
https://www.cosic.esat.kuleuven.be/nessie/testvectors/bc/idea/Idea-128-64.verified.test-vectors
https://en.wikipedia.org/wiki/NESSIE
https://datatracker.ietf.org/doc/html/rfc4269.html
https://datatracker.ietf.org/doc/html/rfc4196.html
https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://datatracker.ietf.org/doc/html/rfc8998.html
https://datatracker.ietf.org/doc/html/rfc4226.html
https://datatracker.ietf.org/doc/html/rfc6238.html
https://www.rfc-editor.org/errata_search.php?rfc=6238
https://csrc.nist.gov/pubs/sp/800/38/b/final
https://datatracker.ietf.org/doc/html/rfc7539.html

Cryptography Documentation, Release 43.0.0.dev1

Creation

The following Python script was run to generate the vector files. The OpenSSL test vectors were used as a base and
modified to have 192-bit key length.

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

import binascii

from cryptography.hazmat.primitives.ciphers.aead import AESGCMSIV

def convert_key_to_192_bits(key: str) -> str:
"""
This takes existing 128 and 256-bit keys from test vectors from OpenSSL
and makes them 192-bit by either appending 0 or truncating the key.
"""
new_key = binascii.unhexlify(key)
if len(new_key) == 16:

new_key += b"\x00" * 8
elif len(new_key) == 32:

new_key = new_key[0:24]
else:

raise RuntimeError(
"Unexpected key length. OpenSSL AES-GCM-SIV test vectors only "
"contain 128-bit and 256-bit keys"

)

return binascii.hexlify(new_key).decode("ascii")

def encrypt(key: str, iv: str, plaintext: str, aad: str) -> (str, str):
aesgcmsiv = AESGCMSIV(binascii.unhexlify(key))
encrypted_output = aesgcmsiv.encrypt(

binascii.unhexlify(iv),
binascii.unhexlify(plaintext),
binascii.unhexlify(aad) if aad else None,

)
ciphertext, tag = encrypted_output[:-16], encrypted_output[-16:]

return (
binascii.hexlify(ciphertext).decode("ascii"),
binascii.hexlify(tag).decode("ascii"),

)

def build_vectors(filename):
count = 0
output = []
key = None
iv = None

(continues on next page)

2.10. Development 287

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

aad = None
plaintext = None

with open(filename) as vector_file:
for line in vector_file:

line = line.strip()
if line.startswith("Key"):

if count != 0:
ciphertext, tag = encrypt(key, iv, plaintext, aad)
output.append(f"Tag = {tag}\nCiphertext = {ciphertext}\n")

output.append(f"\nCOUNT = {count}")
count += 1
aad = None
_, key = line.split(" = ")
key = convert_key_to_192_bits(key)
output.append(f"Key = {key}")

elif line.startswith("IV"):
_, iv = line.split(" = ")
output.append(f"IV = {iv}")

elif line.startswith("AAD"):
_, aad = line.split(" = ")
output.append(f"AAD = {aad}")

elif line.startswith("Plaintext"):
_, plaintext = line.split(" = ")
output.append(f"Plaintext = {plaintext}")

ciphertext, tag = encrypt(key, iv, plaintext, aad)
output.append(f"Tag = {tag}\nCiphertext = {ciphertext}\n")
return "\n".join(output)

def write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

path = "vectors/cryptography_vectors/ciphers/AES/GCM-SIV/openssl.txt"
write_file(build_vectors(path), "aes-192-gcm-siv.txt")

Download link: generate_aes192gcmsiv.py

Verification

The following Rust program was used to verify the vectors.

use aes_gcm_siv::{
aead::{Aead, KeyInit},
AesGcmSiv, Nonce,

};

use aes::Aes192;
(continues on next page)

288 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

use aes_gcm_siv::aead::generic_array::GenericArray;
use aes_gcm_siv::aead::Payload;
use std::fs::File;
use std::io;
use std::io::BufRead;
use std::path::Path;

pub type Aes192GcmSiv = AesGcmSiv<Aes192>;

struct VectorArgs {
nonce: String,
key: String,
aad: String,
tag: String,
plaintext: String,
ciphertext: String,

}

fn validate(v: &VectorArgs) {
let key_bytes = hex::decode(&v.key).unwrap();
let nonce_bytes = hex::decode(&v.nonce).unwrap();
let aad_bytes = hex::decode(&v.aad).unwrap();
let plaintext_bytes = hex::decode(&v.plaintext).unwrap();
let expected_ciphertext_bytes = hex::decode(&v.ciphertext).unwrap();
let expected_tag_bytes = hex::decode(&v.tag).unwrap();

let key_array: [u8; 24] = key_bytes.try_into().unwrap();
let cipher = Aes192GcmSiv::new(&GenericArray::from(key_array));

let payload = Payload {
msg: plaintext_bytes.as_slice(),
aad: aad_bytes.as_slice(),

};
let encrypted_bytes = cipher

.encrypt(Nonce::from_slice(nonce_bytes.as_slice()), payload)

.unwrap();
let (ciphertext_bytes, tag_bytes) = encrypted_bytes.split_at(plaintext_bytes.len());
assert_eq!(ciphertext_bytes, expected_ciphertext_bytes);
assert_eq!(tag_bytes, expected_tag_bytes);

}

fn validate_vectors(filename: &Path) {
let file = File::open(filename).expect("Failed to open file");
let reader = io::BufReader::new(file);

let mut vector: Option<VectorArgs> = None;

for line in reader.lines() {
let line = line.expect("Failed to read line");
let segments: Vec<&str> = line.splitn(2, " = ").collect();

match segments.first() {

(continues on next page)

2.10. Development 289

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

Some(&"COUNT") => {
if let Some(v) = vector.take() {

validate(&v);
}
vector = Some(VectorArgs {

nonce: String::new(),
key: String::new(),
aad: String::new(),
tag: String::new(),
plaintext: String::new(),
ciphertext: String::new(),

});
}
Some(&"IV") => {

if let Some(v) = &mut vector {
v.nonce = segments[1].parse().expect("Failed to parse IV");

}
}
Some(&"Key") => {

if let Some(v) = &mut vector {
v.key = segments[1].to_string();

}
}
Some(&"AAD") => {

if let Some(v) = &mut vector {
v.aad = segments[1].to_string();

}
}
Some(&"Tag") => {

if let Some(v) = &mut vector {
v.tag = segments[1].to_string();

}
}
Some(&"Plaintext") => {

if let Some(v) = &mut vector {
v.plaintext = segments[1].to_string();

}
}
Some(&"Ciphertext") => {

if let Some(v) = &mut vector {
v.ciphertext = segments[1].to_string();

}
}
_ => {}

}
}

if let Some(v) = vector {
validate(&v);

}
}

(continues on next page)

290 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

fn main() {
validate_vectors(Path::new(

"vectors/cryptography_vectors/ciphers/AES/GCM-SIV/aes-192-gcm-siv.txt",
));
println!("AES-192-GCM-SIV OK.")

}

Download link: main.rs

ARC4 vector creation

This page documents the code that was used to generate the ARC4 test vectors for key lengths not available in RFC
6229. All the vectors were generated using OpenSSL and verified with Go.

Creation

cryptography was modified to support ARC4 key lengths not listed in RFC 6229. Then the following Python script
was run to generate the vector files.

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

import binascii

from cryptography.hazmat.primitives import ciphers
from cryptography.hazmat.primitives.ciphers import algorithms

_RFC6229_KEY_MATERIALS = [
(

True,
8 * "0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f20",

),
(

False,
8 * "1ada31d5cf688221c109163908ebe51debb46227c6cc8b37641910833222772a",

),
]

_RFC6229_OFFSETS = [
0,
16,
240,
256,
496,
512,
752,
768,
1008,

(continues on next page)

2.10. Development 291

https://datatracker.ietf.org/doc/html/rfc6229.html
https://datatracker.ietf.org/doc/html/rfc6229.html
https://datatracker.ietf.org/doc/html/rfc6229.html

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

1024,
1520,
1536,
2032,
2048,
3056,
3072,
4080,
4096,

]

_SIZES_TO_GENERATE = [160]

def _key_for_size(size, keyinfo):
msb, key = keyinfo
if msb:

return key[: size // 4]
else:

return key[-size // 4 :]

def _build_vectors():
count = 0
output = []
key = None
plaintext = binascii.unhexlify(32 * "0")
for size in _SIZES_TO_GENERATE:

for keyinfo in _RFC6229_KEY_MATERIALS:
key = _key_for_size(size, keyinfo)
cipher = ciphers.Cipher(

algorithms.ARC4(binascii.unhexlify(key)),
None,

)
encryptor = cipher.encryptor()
current_offset = 0
for offset in _RFC6229_OFFSETS:

if offset % 16 != 0:
raise ValueError(

f"Offset {offset} is not evenly divisible by 16"
)

while current_offset < offset:
encryptor.update(plaintext)
current_offset += len(plaintext)

output.append(f"\nCOUNT = {count}")
count += 1
output.append(f"KEY = {key}")
output.append(f"OFFSET = {offset}")
output.append(f"PLAINTEXT = {binascii.hexlify(plaintext)}")
output.append(

f"CIPHERTEXT = "

(continues on next page)

292 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

f"{binascii.hexlify(encryptor.update(plaintext))}"
)
current_offset += len(plaintext)

assert not encryptor.finalize()
return "\n".join(output)

def _write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

if __name__ == "__main__":
_write_file(_build_vectors(), "arc4.txt")

Download link: generate_arc4.py

Verification

The following Go code was used to verify the vectors.

package main

import (
"bufio"
"bytes"
"crypto/rc4"
"encoding/hex"
"fmt"
"os"
"strconv"
"strings"

)

func unhexlify(s string) []byte {
bytes, err := hex.DecodeString(s)
if err != nil {

panic(err)
}
return bytes

}

type vectorArgs struct {
count string
offset uint64
key string
plaintext string
ciphertext string

}

type vectorVerifier interface {
(continues on next page)

2.10. Development 293

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

validate(count string, offset uint64, key, plaintext, expectedCiphertext []byte)
}

type arc4Verifier struct{}

func (o arc4Verifier) validate(count string, offset uint64, key, plaintext,␣
→˓expectedCiphertext []byte) {

if offset%16 != 0 || len(plaintext) != 16 || len(expectedCiphertext) != 16 {
panic(fmt.Errorf("Unexpected input value encountered: offset=%v;␣

→˓len(plaintext)=%v; len(expectedCiphertext)=%v",
offset,
len(plaintext),
len(expectedCiphertext)))

}
stream, err := rc4.NewCipher(key)
if err != nil {

panic(err)
}

var currentOffset uint64 = 0
ciphertext := make([]byte, len(plaintext))
for currentOffset <= offset {

stream.XORKeyStream(ciphertext, plaintext)
currentOffset += uint64(len(plaintext))

}
if !bytes.Equal(ciphertext, expectedCiphertext) {

panic(fmt.Errorf("vector mismatch @ COUNT = %s:\n %s != %s\n",
count,
hex.EncodeToString(expectedCiphertext),
hex.EncodeToString(ciphertext)))

}
}

func validateVectors(verifier vectorVerifier, filename string) {
vectors, err := os.Open(filename)
if err != nil {

panic(err)
}
defer vectors.Close()

var segments []string
var vector *vectorArgs

scanner := bufio.NewScanner(vectors)
for scanner.Scan() {

segments = strings.Split(scanner.Text(), " = ")

switch {
case strings.ToUpper(segments[0]) == "COUNT":

if vector != nil {
verifier.validate(vector.count,

vector.offset,

(continues on next page)

294 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

unhexlify(vector.key),
unhexlify(vector.plaintext),
unhexlify(vector.ciphertext))

}
vector = &vectorArgs{count: segments[1]}

case strings.ToUpper(segments[0]) == "OFFSET":
vector.offset, err = strconv.ParseUint(segments[1], 10, 64)
if err != nil {

panic(err)
}

case strings.ToUpper(segments[0]) == "KEY":
vector.key = segments[1]

case strings.ToUpper(segments[0]) == "PLAINTEXT":
vector.plaintext = segments[1]

case strings.ToUpper(segments[0]) == "CIPHERTEXT":
vector.ciphertext = segments[1]

}
}
if vector != nil {

verifier.validate(vector.count,
vector.offset,
unhexlify(vector.key),
unhexlify(vector.plaintext),
unhexlify(vector.ciphertext))

}
}

func main() {
validateVectors(arc4Verifier{}, "vectors/cryptography_vectors/ciphers/ARC4/arc4.

→˓txt")
fmt.Println("ARC4 OK.")

}

Download link: verify_arc4.go

CAST5 vector creation

This page documents the code that was used to generate the CAST5 CBC, CFB, OFB, and CTR test vectors as well as
the code used to verify them against another implementation. The CBC, CFB, and OFB vectors were generated using
OpenSSL and the CTR vectors were generated using Apple’s CommonCrypto. All the generated vectors were verified
with Go.

2.10. Development 295

Cryptography Documentation, Release 43.0.0.dev1

Creation

cryptography was modified to support CAST5 in CBC, CFB, and OFB modes. Then the following Python script was
run to generate the vector files.

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

import binascii

from cryptography.hazmat.primitives.ciphers import algorithms, base, modes

def encrypt(mode, key, iv, plaintext):
cipher = base.Cipher(

algorithms.CAST5(binascii.unhexlify(key)),
mode(binascii.unhexlify(iv)),

)
encryptor = cipher.encryptor()
ct = encryptor.update(binascii.unhexlify(plaintext))
ct += encryptor.finalize()
return binascii.hexlify(ct)

def build_vectors(mode, filename):
count = 0
output = []
key = None
iv = None
plaintext = None

with open(filename) as vector_file:
for line in vector_file:

line = line.strip()
if line.startswith("KEY"):

if count != 0:
output.append(

f"CIPHERTEXT = {encrypt(mode, key, iv, plaintext)}"
)

output.append(f"\nCOUNT = {count}")
count += 1
_, key = line.split(" = ")
output.append(f"KEY = {key}")

elif line.startswith("IV"):
_, iv = line.split(" = ")
iv = iv[0:16]
output.append(f"IV = {iv}")

elif line.startswith("PLAINTEXT"):
_, plaintext = line.split(" = ")
output.append(f"PLAINTEXT = {plaintext}")

output.append(f"CIPHERTEXT = {encrypt(mode, key, iv, plaintext)}")
return "\n".join(output)

(continues on next page)

296 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

def write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

cbc_path = "tests/hazmat/primitives/vectors/ciphers/AES/CBC/CBCMMT128.rsp"
write_file(build_vectors(modes.CBC, cbc_path), "cast5-cbc.txt")
ofb_path = "tests/hazmat/primitives/vectors/ciphers/AES/OFB/OFBMMT128.rsp"
write_file(build_vectors(modes.OFB, ofb_path), "cast5-ofb.txt")
cfb_path = "tests/hazmat/primitives/vectors/ciphers/AES/CFB/CFB128MMT128.rsp"
write_file(build_vectors(modes.CFB, cfb_path), "cast5-cfb.txt")
ctr_path = "tests/hazmat/primitives/vectors/ciphers/AES/CTR/aes-128-ctr.txt"
write_file(build_vectors(modes.CTR, ctr_path), "cast5-ctr.txt")

Download link: generate_cast5.py

Verification

The following Go code was used to verify the vectors.

package main

import (
"bufio"
"bytes"
"golang.org/x/crypto/cast5"
"crypto/cipher"
"encoding/hex"
"fmt"
"os"
"strings"

)

func unhexlify(s string) []byte {
bytes, err := hex.DecodeString(s)
if err != nil {

panic(err)
}
return bytes

}

type vectorArgs struct {
count string
key string
iv string
plaintext string
ciphertext string

}

(continues on next page)

2.10. Development 297

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

type vectorVerifier interface {
validate(count string, key, iv, plaintext, expectedCiphertext []byte)

}

type ofbVerifier struct{}

func (o ofbVerifier) validate(count string, key, iv, plaintext, expectedCiphertext␣
→˓[]byte) {

block, err := cast5.NewCipher(key)
if err != nil {

panic(err)
}

ciphertext := make([]byte, len(plaintext))
stream := cipher.NewOFB(block, iv)
stream.XORKeyStream(ciphertext, plaintext)

if !bytes.Equal(ciphertext, expectedCiphertext) {
panic(fmt.Errorf("vector mismatch @ COUNT = %s:\n %s != %s\n",

count,
hex.EncodeToString(expectedCiphertext),
hex.EncodeToString(ciphertext)))

}
}

type cbcVerifier struct{}

func (o cbcVerifier) validate(count string, key, iv, plaintext, expectedCiphertext␣
→˓[]byte) {

block, err := cast5.NewCipher(key)
if err != nil {

panic(err)
}

ciphertext := make([]byte, len(plaintext))
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(ciphertext, plaintext)

if !bytes.Equal(ciphertext, expectedCiphertext) {
panic(fmt.Errorf("vector mismatch @ COUNT = %s:\n %s != %s\n",

count,
hex.EncodeToString(expectedCiphertext),
hex.EncodeToString(ciphertext)))

}
}

type cfbVerifier struct{}

func (o cfbVerifier) validate(count string, key, iv, plaintext, expectedCiphertext␣
→˓[]byte) {

block, err := cast5.NewCipher(key)
if err != nil {

(continues on next page)

298 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

panic(err)
}

ciphertext := make([]byte, len(plaintext))
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(ciphertext, plaintext)

if !bytes.Equal(ciphertext, expectedCiphertext) {
panic(fmt.Errorf("vector mismatch @ COUNT = %s:\n %s != %s\n",

count,
hex.EncodeToString(expectedCiphertext),
hex.EncodeToString(ciphertext)))

}
}

type ctrVerifier struct{}

func (o ctrVerifier) validate(count string, key, iv, plaintext, expectedCiphertext␣
→˓[]byte) {

block, err := cast5.NewCipher(key)
if err != nil {

panic(err)
}

ciphertext := make([]byte, len(plaintext))
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(ciphertext, plaintext)

if !bytes.Equal(ciphertext, expectedCiphertext) {
panic(fmt.Errorf("vector mismatch @ COUNT = %s:\n %s != %s\n",

count,
hex.EncodeToString(expectedCiphertext),
hex.EncodeToString(ciphertext)))

}
}

func validateVectors(verifier vectorVerifier, filename string) {
vectors, err := os.Open(filename)
if err != nil {

panic(err)
}
defer vectors.Close()

var segments []string
var vector *vectorArgs

scanner := bufio.NewScanner(vectors)
for scanner.Scan() {

segments = strings.Split(scanner.Text(), " = ")

switch {
case strings.ToUpper(segments[0]) == "COUNT":

(continues on next page)

2.10. Development 299

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

if vector != nil {
verifier.validate(vector.count,

unhexlify(vector.key),
unhexlify(vector.iv),
unhexlify(vector.plaintext),
unhexlify(vector.ciphertext))

}
vector = &vectorArgs{count: segments[1]}

case strings.ToUpper(segments[0]) == "IV":
vector.iv = segments[1][:16]

case strings.ToUpper(segments[0]) == "KEY":
vector.key = segments[1]

case strings.ToUpper(segments[0]) == "PLAINTEXT":
vector.plaintext = segments[1]

case strings.ToUpper(segments[0]) == "CIPHERTEXT":
vector.ciphertext = segments[1]

}
}

}

func main() {
validateVectors(ofbVerifier{},

"vectors/cryptography_vectors/ciphers/CAST5/cast5-ofb.txt")
fmt.Println("OFB OK.")
validateVectors(cfbVerifier{},

"vectors/cryptography_vectors/ciphers/CAST5/cast5-cfb.txt")
fmt.Println("CFB OK.")
validateVectors(cbcVerifier{},

"vectors/cryptography_vectors/ciphers/CAST5/cast5-cbc.txt")
fmt.Println("CBC OK.")
validateVectors(ctrVerifier{},

"vectors/cryptography_vectors/ciphers/CAST5/cast5-ctr.txt")
fmt.Println("CTR OK.")

}

Download link: verify_cast5.go

ChaCha20 vector creation

This page documents the code that was used to generate the vectors to test the counter overflow behavior in ChaCha20
as well as code used to verify them against another implementation.

300 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Creation

The following Python script was run to generate the vector files.

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

import binascii
import struct

from cryptography.hazmat.primitives import ciphers
from cryptography.hazmat.primitives.ciphers import algorithms

_N_BLOCKS = [1, 1.5, 2, 2.5, 3]
_INITIAL_COUNTERS = [2**32 - 1, 2**64 - 1]

def _build_vectors():
count = 0
output = []
key = "0" * 64
nonce = "0" * 16
for blocks in _N_BLOCKS:

plaintext = binascii.unhexlify("0" * int(128 * blocks))
for counter in _INITIAL_COUNTERS:

full_nonce = struct.pack("<Q", counter) + binascii.unhexlify(nonce)
cipher = ciphers.Cipher(

algorithms.ChaCha20(binascii.unhexlify(key), full_nonce),
None,

)
encryptor = cipher.encryptor()
output.append(f"\nCOUNT = {count}")
count += 1
output.append(f"KEY = {key}")
output.append(f"NONCE = {nonce}")
output.append(f"INITIAL_BLOCK_COUNTER = {counter}")
output.append(f"PLAINTEXT = {binascii.hexlify(plaintext)}")
output.append(

f"CIPHERTEXT = {binascii.hexlify(encryptor.update(plaintext))}"
)

return "\n".join(output)

def _write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

if __name__ == "__main__":
_write_file(_build_vectors(), "counter-overflow.txt")

Download link: generate_chacha20_overflow.py

2.10. Development 301

Cryptography Documentation, Release 43.0.0.dev1

Verification

The following Python script was used to verify the vectors. The counter overflow is handled manually to avoid relying
on the same code that generated the vectors.

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

import binascii
import math
import struct
from pathlib import Path

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms
from tests.utils import load_nist_vectors

BLOCK_SIZE = 64
MAX_COUNTER = 2**64 - 1

def encrypt(
key: bytes, nonce: bytes, initial_block_counter: int, plaintext: bytes

) -> bytes:
full_nonce = struct.pack("<Q", initial_block_counter) + nonce
encryptor = Cipher(

algorithms.ChaCha20(key, full_nonce), mode=None
).encryptor()

plaintext_len_blocks = math.ceil(len(plaintext) / BLOCK_SIZE)
blocks_until_overflow = MAX_COUNTER - initial_block_counter + 1

if plaintext_len_blocks <= blocks_until_overflow:
return binascii.hexlify(encryptor.update(plaintext))

else:
bytes_until_overflow = min(blocks_until_overflow * 64, len(plaintext))
first_batch = binascii.hexlify(

encryptor.update(plaintext[:bytes_until_overflow])
)
We manually handle the overflow by resetting the counter to zero once
we surpass MAX_COUNTER blocks. This way we can check the vectors are
correct without relying on the same logic that generated them.
full_nonce = struct.pack("<Q", 0) + nonce
encryptor = Cipher(

algorithms.ChaCha20(key, full_nonce), mode=None
).encryptor()
second_batch = binascii.hexlify(

encryptor.update(plaintext[bytes_until_overflow:])
)
return first_batch + second_batch

def verify_vectors(filename: Path):
(continues on next page)

302 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

with open(filename) as f:
vector_file = f.read().splitlines()

vectors = load_nist_vectors(vector_file)
for vector in vectors:

key = binascii.unhexlify(vector["key"])
nonce = binascii.unhexlify(vector["nonce"])
ibc = int(vector["initial_block_counter"])
pt = binascii.unhexlify(vector["plaintext"])

computed_ct = encrypt(key, nonce, ibc, pt)

assert computed_ct == vector["ciphertext"]

overflow_path = Path(
"vectors/cryptography_vectors/ciphers/ChaCha20/counter-overflow.txt"

)
verify_vectors(overflow_path)

Download link: verify_chacha20_overflow.py

IDEA vector creation

This page documents the code that was used to generate the IDEA CBC, CFB, and OFB test vectors as well as the code
used to verify them against another implementation. The vectors were generated using OpenSSL and verified with
Botan.

Creation

cryptography was modified to support IDEA in CBC, CFB, and OFB modes. Then the following python script was
run to generate the vector files.

import binascii

from cryptography.hazmat.primitives.ciphers import algorithms, base, modes

def encrypt(mode, key, iv, plaintext):
cipher = base.Cipher(

algorithms.IDEA(binascii.unhexlify(key)),
mode(binascii.unhexlify(iv)),

)
encryptor = cipher.encryptor()
ct = encryptor.update(binascii.unhexlify(plaintext))
ct += encryptor.finalize()
return binascii.hexlify(ct)

def build_vectors(mode, filename):
(continues on next page)

2.10. Development 303

https://botan.randombit.net

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

with open(filename) as f:
vector_file = f.read().splitlines()

count = 0
output = []
key = None
iv = None
plaintext = None
for line in vector_file:

line = line.strip()
if line.startswith("KEY"):

if count != 0:
output.append(

f"CIPHERTEXT = {encrypt(mode, key, iv, plaintext)}"
)

output.append(f"\nCOUNT = {count}")
count += 1
_, key = line.split(" = ")
output.append(f"KEY = {key}")

elif line.startswith("IV"):
_, iv = line.split(" = ")
iv = iv[0:16]
output.append(f"IV = {iv}")

elif line.startswith("PLAINTEXT"):
_, plaintext = line.split(" = ")
output.append(f"PLAINTEXT = {plaintext}")

output.append(f"CIPHERTEXT = {encrypt(mode, key, iv, plaintext)}")
return "\n".join(output)

def write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

CBC_PATH = "tests/hazmat/primitives/vectors/ciphers/AES/CBC/CBCMMT128.rsp"
write_file(build_vectors(modes.CBC, CBC_PATH), "idea-cbc.txt")
OFB_PATH = "tests/hazmat/primitives/vectors/ciphers/AES/OFB/OFBMMT128.rsp"
write_file(build_vectors(modes.OFB, OFB_PATH), "idea-ofb.txt")
CFB_PATH = "tests/hazmat/primitives/vectors/ciphers/AES/CFB/CFB128MMT128.rsp"
write_file(build_vectors(modes.CFB, CFB_PATH), "idea-cfb.txt")

Download link: generate_idea.py

304 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Verification

The following Python code was used to verify the vectors using the Botan project’s Python bindings.

import binascii

import botan

from tests.utils import load_nist_vectors

BLOCK_SIZE = 64

def encrypt(mode, key, iv, plaintext):
encryptor = botan.Cipher(

f"IDEA/{mode}/NoPadding", "encrypt", binascii.unhexlify(key)
)

cipher_text = encryptor.cipher(
binascii.unhexlify(plaintext), binascii.unhexlify(iv)

)
return binascii.hexlify(cipher_text)

def verify_vectors(mode, filename):
with open(filename) as f:

vector_file = f.read().splitlines()

vectors = load_nist_vectors(vector_file)
for vector in vectors:

ct = encrypt(mode, vector["key"], vector["iv"], vector["plaintext"])
assert ct == vector["ciphertext"]

cbc_path = "tests/hazmat/primitives/vectors/ciphers/IDEA/idea-cbc.txt"
verify_vectors("CBC", cbc_path)
ofb_path = "tests/hazmat/primitives/vectors/ciphers/IDEA/idea-ofb.txt"
verify_vectors("OFB", ofb_path)
cfb_path = "tests/hazmat/primitives/vectors/ciphers/IDEA/idea-cfb.txt"
verify_vectors("CFB", cfb_path)

Download link: verify_idea.py

2.10. Development 305

https://botan.randombit.net

Cryptography Documentation, Release 43.0.0.dev1

SEED vector creation

This page documents the code that was used to generate the SEED CFB and OFB test vectors as well as the code used
to verify them against another implementation. The vectors were generated using OpenSSL and verified with Botan.

Creation

cryptography was modified to support SEED in CFB and OFB modes. Then the following python script was run to
generate the vector files.

import binascii

from cryptography.hazmat.primitives.ciphers import algorithms, base, modes

def encrypt(mode, key, iv, plaintext):
cipher = base.Cipher(

algorithms.SEED(binascii.unhexlify(key)),
mode(binascii.unhexlify(iv)),

)
encryptor = cipher.encryptor()
ct = encryptor.update(binascii.unhexlify(plaintext))
ct += encryptor.finalize()
return binascii.hexlify(ct)

def build_vectors(mode, filename):
with open(filename) as f:

vector_file = f.read().splitlines()

count = 0
output = []
key = None
iv = None
plaintext = None
for line in vector_file:

line = line.strip()
if line.startswith("KEY"):

if count != 0:
output.append(

f"CIPHERTEXT = {encrypt(mode, key, iv, plaintext)}"
)

output.append(f"\nCOUNT = {count}")
count += 1
_, key = line.split(" = ")
output.append(f"KEY = {key}")

elif line.startswith("IV"):
_, iv = line.split(" = ")
output.append(f"IV = {iv}")

elif line.startswith("PLAINTEXT"):
_, plaintext = line.split(" = ")
output.append(f"PLAINTEXT = {plaintext}")

(continues on next page)

306 Chapter 2. Layout

https://botan.randombit.net

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

output.append(f"CIPHERTEXT = {encrypt(mode, key, iv, plaintext)}")
return "\n".join(output)

def write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

OFB_PATH = "vectors/cryptography_vectors/ciphers/AES/OFB/OFBMMT128.rsp"
write_file(build_vectors(modes.OFB, OFB_PATH), "seed-ofb.txt")
CFB_PATH = "vectors/cryptography_vectors/ciphers/AES/CFB/CFB128MMT128.rsp"
write_file(build_vectors(modes.CFB, CFB_PATH), "seed-cfb.txt")

Download link: generate_seed.py

Verification

The following Python code was used to verify the vectors using the Botan project’s Python bindings.

import binascii

import botan

from tests.utils import load_nist_vectors

def encrypt(mode, key, iv, plaintext):
encryptor = botan.Cipher(

f"SEED/{mode}/NoPadding", "encrypt", binascii.unhexlify(key)
)

cipher_text = encryptor.cipher(
binascii.unhexlify(plaintext), binascii.unhexlify(iv)

)
return binascii.hexlify(cipher_text)

def verify_vectors(mode, filename):
with open(filename) as f:

vector_file = f.read().splitlines()

vectors = load_nist_vectors(vector_file)
for vector in vectors:

ct = encrypt(mode, vector["key"], vector["iv"], vector["plaintext"])
assert ct == vector["ciphertext"]

ofb_path = "vectors/cryptography_vectors/ciphers/SEED/seed-ofb.txt"
verify_vectors("OFB", ofb_path)

(continues on next page)

2.10. Development 307

https://botan.randombit.net

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

cfb_path = "vectors/cryptography_vectors/ciphers/SEED/seed-cfb.txt"
verify_vectors("CFB", cfb_path)

Download link: verify_seed.py

HKDF vector creation

This page documents the code that was used to generate a longer HKDF test vector (1200 bytes) than is available in
RFC 5869. All the vectors were generated using OpenSSL and verified with Go.

Creation

The following Python script was run to generate the vector files.

This file is dual licensed under the terms of the Apache License, Version
2.0, and the BSD License. See the LICENSE file in the root of this repository
for complete details.

import binascii

from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.hkdf import HKDF

IKM = binascii.unhexlify(b"0b")
L = 1200
OKM = HKDF(

algorithm=hashes.SHA256(),
length=L,
salt=None,
info=None,

).derive(IKM)

def _build_vectors():
output = [

"COUNT = 0",
"Hash = SHA-256",
"IKM = " + binascii.hexlify(IKM).decode("ascii"),
"salt = ",
"info = ",
f"L = {L}",
"OKM = " + binascii.hexlify(OKM).decode("ascii"),

]
return "\n".join(output)

def _write_file(data, filename):
with open(filename, "w") as f:

f.write(data)

(continues on next page)

308 Chapter 2. Layout

https://datatracker.ietf.org/doc/html/rfc5869.html

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

if __name__ == "__main__":
_write_file(_build_vectors(), "hkdf.txt")

Download link: generate_hkdf.py

Verification

The following Go code was used to verify the vectors.

package main

import (
"bufio"
"bytes"
"crypto/sha256"
"encoding/hex"
"fmt"
"golang.org/x/crypto/hkdf"
"io"
"os"
"strconv"
"strings"

)

func unhexlify(s string) []byte {
bytes, err := hex.DecodeString(s)
if err != nil {

panic(err)
}
return bytes

}

func verifier(l uint64, ikm, okm []byte) bool {
hash := sha256.New
hkdf := hkdf.New(hash, ikm, nil, nil)
okmComputed := make([]byte, l)
io.ReadFull(hkdf, okmComputed)
return bytes.Equal(okmComputed, okm)

}

func validateVectors(filename string) bool {
vectors, err := os.Open(filename)
if err != nil {

panic(err)
}
defer vectors.Close()

var segments []string
var l uint64
var ikm, okm string

(continues on next page)

2.10. Development 309

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

scanner := bufio.NewScanner(vectors)
for scanner.Scan() {

segments = strings.Split(scanner.Text(), " = ")

switch {
case strings.ToUpper(segments[0]) == "L":

l, err = strconv.ParseUint(segments[1], 10, 64)
if err != nil {

panic(err)
}

case strings.ToUpper(segments[0]) == "IKM":
ikm = segments[1]

case strings.ToUpper(segments[0]) == "OKM":
okm = segments[1]

}
}
return verifier(l, unhexlify(ikm), unhexlify(okm))

}

func main() {
if validateVectors("vectors/cryptography_vectors/KDF/hkdf-generated.txt") {

fmt.Println("HKDF OK.")
} else {

fmt.Println("HKDF failed.")
os.Exit(1)

}
}

Download link: verify_hkdf.go

RC2 vector creation

This page documents the code that was used to generate the RC2 CBC test vector. The CBC vector was generated using
Go’s internal RC2 implementation and verified using Go and OpenSSL.

Creation/Verification

The program below outputs a test vector in the standard format we use and also verifies that the encrypted value
round trips as expected. The output was also checked against OpenSSL by modifying cryptography to support the
algorithm. If you wish to run this program we recommend cloning the repository, which also contains the requisite
go.mod file.

package main

import (
"bytes"
"crypto/cipher"
"encoding/hex"
"fmt"

(continues on next page)

310 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

(continued from previous page)

"rc2sucks/rc2"
)

func main() {
// Generate
count := 1
key := []byte("0000000000000000")
iv := []byte("00000000")
plaintext := []byte("the quick brown fox jumped over the lazy dog!!!!")
ciphertext := make([]byte, len(plaintext))
block, _ := rc2.New(key, 128)
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(ciphertext, plaintext)
fmt.Printf("COUNT = %v\n", count)
fmt.Printf("Key = %s\n", hex.EncodeToString(key))
fmt.Printf("IV = %s\n", hex.EncodeToString(iv))
fmt.Printf("Plaintext = %s\n", hex.EncodeToString(plaintext))
fmt.Printf("Ciphertext = %s\n", hex.EncodeToString(ciphertext))
// Verify
decrypted := make([]byte, len(plaintext))
decmode := cipher.NewCBCDecrypter(block, iv)
decmode.CryptBlocks(decrypted, ciphertext)
if bytes.Equal(decrypted, plaintext) {

fmt.Println("Success")
} else {

fmt.Println("Failed")
}

}

Download link: genrc2.go

Download link: rc2.go

If official test vectors appear in the future the custom generated vectors should be discarded.

Any vectors generated by this method must also be prefixed with the following header format (substituting the correct
information):

CAST5 CBC vectors built for https://github.com/pyca/cryptography
Derived from the AESVS MMT test data for CBC
Verified against the CommonCrypto and Go crypto packages
Key Length : 128

2.10.5 C bindings

C bindings are bindings to C libraries, using cffi whenever possible.

Bindings live in cryptography.hazmat.bindings.

When modifying the bindings you will need to recompile the C extensions to test the changes. This can be accomplished
with pip install -e . in the project root. If you do not do this a RuntimeError will be raised.

2.10. Development 311

https://cffi.readthedocs.io

Cryptography Documentation, Release 43.0.0.dev1

Style guide

Don’t name parameters:

/* Good */
long f(long);
/* Bad */
long f(long x);

. . . unless they’re inside a struct:

struct my_struct {
char *name;
int number;
...;

};

Include void if the function takes no arguments:

/* Good */
long f(void);
/* Bad */
long f();

Wrap lines at 80 characters like so:

/* Pretend this went to 80 characters */
long f(long, long,

int *)

Include a space after commas between parameters:

/* Good */
long f(int, char *)
/* Bad */
long f(int,char *)

Use C-style /* */ comments instead of C++-style //:

// Bad
/* Good */

Values set by #define should be assigned the appropriate type. If you see this:

#define SOME_INTEGER_LITERAL 0x0;
#define SOME_UNSIGNED_INTEGER_LITERAL 0x0001U;
#define SOME_STRING_LITERAL "hello";

. . . it should be added to the bindings like so:

static const int SOME_INTEGER_LITERAL;
static const unsigned int SOME_UNSIGNED_INTEGER_LITERAL;
static const char *const SOME_STRING_LITERAL;

312 Chapter 2. Layout

Cryptography Documentation, Release 43.0.0.dev1

Adding constant, types, functions. . .

You can create bindings for any name that exists in some version of the library you’re binding against. However,
the project also has to keep supporting older versions of the library. In order to achieve this, binding modules
have a CUSTOMIZATIONS constant, and there is a CONDITIONAL_NAMES constants in src/cryptography/hazmat/
bindings/openssl/_conditional.py.

Let’s say you want to enable quantum transmogrification. The upstream library implements this as the following API:

static const int QM_TRANSMOGRIFICATION_ALIGNMENT_LEFT;
static const int QM_TRANSMOGRIFICATION_ALIGNMENT_RIGHT;
typedef ... QM_TRANSMOGRIFICATION_CTX;
int QM_transmogrify(QM_TRANSMOGRIFICATION_CTX *, int);

To start, create a new constant that defines if the actual library has the feature you want, and add it to TYPES:

static const long Cryptography_HAS_QUANTUM_TRANSMOGRIFICATION;

This should start with Cryptography_, since we’re adding it in this library. This prevents namespace collisions.

Then, define the actual features (constants, types, functions. . .) you want to expose. If it’s a constant, just add it to
TYPES:

static const int QM_TRANSMOGRIFICATION_ALIGNMENT_LEFT;
static const int QM_TRANSMOGRIFICATION_ALIGNMENT_RIGHT;

If it’s a struct, add it to TYPES as well. The following is an opaque struct:

typedef ... QM_TRANSMOGRIFICATION_CTX;

. . . but you can also make some or all items in the struct accessible:

typedef struct {
/* Fundamental constant k for your particular universe */
BIGNUM *k;
...;

} QM_TRANSMOGRIFICATION_CTX;

For functions just add the signature to FUNCTIONS:

int QM_transmogrify(QM_TRANSMOGRIFICATION_CTX *, int);

Then, we define the CUSTOMIZATIONS entry. To do that, we have to come up with a C preprocessor expression that
decides whether or not a feature exists in the library. For example:

#ifdef QM_transmogrify

Then, we set the flag that signifies the feature exists:

static const long Cryptography_HAS_QUANTUM_TRANSMOGRIFICATION = 1;

Otherwise, we set that flag to 0:

#else
static const long Cryptography_HAS_QUANTUM_TRANSMOGRIFICATION = 0;

Then, in that #else block, we define the names that aren’t available as dummy values. For an integer constant, use 0:

2.10. Development 313

Cryptography Documentation, Release 43.0.0.dev1

static const int QM_TRANSMOGRIFICATION_ALIGNMENT_LEFT = 0;
static const int QM_TRANSMOGRIFICATION_ALIGNMENT_RIGHT = 0;

For a function, it’s a bit trickier. You have to define a function pointer of the appropriate type to be NULL:

int (*QM_transmogrify)(QM_TRANSMOGRIFICATION_CTX *, int) = NULL;

(To do that, copy the signature, put a * in front of the function name and wrap it in parentheses, and then put = NULL
at the end).

Note how types don’t need to be conditionally defined, as long as all the necessarily type definitions are in place.

Finally, add an entry to CONDITIONAL_NAMES with all of the things you want to conditionally export:

def cryptography_has_quantum_transmogrification():
return [

"QM_TRANSMOGRIFICATION_ALIGNMENT_LEFT",
"QM_TRANSMOGRIFICATION_ALIGNMENT_RIGHT",
"QM_transmogrify",

]

CONDITIONAL_NAMES = {
...
"Cryptography_HAS_QUANTUM_TRANSMOGRIFICATION": (

cryptography_has_quantum_transmogrification
),

}

Caveats

Sometimes, a set of loosely related features are added in the same version, and it’s impractical to create #ifdef state-
ments for each one. In that case, it may make sense to either check for a particular version. For example, to check for
OpenSSL 1.1.1 or newer:

#if CRYPTOGRAPHY_OPENSSL_111_OR_GREATER

Sometimes, the version of a library on a particular platform will have features that you thought it wouldn’t, based on
its version. Occasionally, packagers appear to ship arbitrary VCS checkouts. As a result, sometimes you may have to
add separate #ifdef statements for particular features. This kind of issue is typically only caught by running the tests
on a wide variety of systems, which is the job of our continuous integration infrastructure.

2.11 Use of OpenSSL

cryptography depends on the OpenSSL C library for all cryptographic operation. OpenSSL is the de facto standard
for cryptographic libraries and provides high performance along with various certifications that may be relevant to
developers.

A list of supported versions can be found in our Installation documentation.

In general the backend should be considered an internal implementation detail of the project, but there are some public
methods available for debugging purposes.

314 Chapter 2. Layout

https://www.openssl.org/

Cryptography Documentation, Release 43.0.0.dev1

cryptography.hazmat.backends.openssl.backend

openssl_version_text()

Return text
The friendly string name of the loaded OpenSSL library. This is not necessarily the same
version as it was compiled against.

openssl_version_number()

Added in version 1.8.

Return int
The integer version of the loaded OpenSSL library. This is defined in opensslv.h as
OPENSSL_VERSION_NUMBER and is typically shown in hexadecimal (e.g. 0x1010003f). This
is not necessarily the same version as it was compiled against.

2.11.1 Legacy provider in OpenSSL 3.x

Added in version 39.0.0.

Users can set CRYPTOGRAPHY_OPENSSL_NO_LEGACY environment variable to disable the legacy provider in OpenSSL
3.x. This will disable legacy cryptographic algorithms, including Blowfish, CAST5, SEED, ARC4, and RC2 (which is
used by some encrypted serialization formats).

2.12 Security

We take the security of cryptography seriously. The following are a set of policies we have adopted to ensure that
security issues are addressed in a timely fashion.

2.12.1 Known vulnerabilities

A list of all known vulnerabilities in cryptography can be found on osv.dev, as well as other ecosystem vulnerability
databases. They can automatically be scanned for using tools such as pip-audit or osv-scan.

2.12.2 Infrastructure

In addition to cryptography’s code, we’re also concerned with the security of the infrastructure we run (primarily
cryptography.io). If you discover a security vulnerability in our infrastructure, we ask you to report it using the
same procedure.

2.12.3 What is a security issue?

Anytime it’s possible to write code using cryptography’s public API which does not provide the guarantees that a
reasonable developer would expect it to based on our documentation.

That’s a bit academic, but basically it means the scope of what we consider a vulnerability is broad, and we do not
require a proof of concept or even a specific exploit, merely a reasonable threat model under which cryptography
could be attacked.

To give a few examples of things we would consider security issues:

2.12. Security 315

https://osv.dev/list?ecosystem=PyPI&q=cryptography
https://pypi.org/project/pip-audit/
https://google.github.io/osv-scanner/

Cryptography Documentation, Release 43.0.0.dev1

• If a recipe, such as Fernet, made it easy for a user to bypass confidentiality or integrity with the public API (e.g.
if the API let a user reuse nonces).

• If, under any circumstances, we used a CSPRNG which wasn’t fork-safe.

• If cryptography used an API in an underlying C library and failed to handle error conditions safely.

Examples of things we wouldn’t consider security issues:

• Offering ECB mode for symmetric encryption in the Hazmat layer. Though ECB is critically weak, it is docu-
mented as being weak in our documentation.

• Using a variable time comparison somewhere, if it’s not possible to articulate any particular program in which
this would result in problematic information disclosure.

In general, if you’re unsure, we request that you to default to treating things as security issues and handling them
sensitively, the worst thing that can happen is that we’ll ask you to file a public issue.

2.12.4 Reporting a security issue

We ask that you do not report security issues to our normal GitHub issue tracker.

If you believe you’ve identified a security issue with cryptography, please report it via our security advisory page.

Once you’ve submitted an issue, you should receive an acknowledgment within 48 hours, and depending on the action
to be taken, you may receive further follow-up.

2.12.5 Supported Versions

At any given time, we will provide security support for the main branch as well as the most recent release.

2.12.6 New releases for OpenSSL updates

As of versions 0.5, 1.0.1, and 2.0.0, cryptography statically links OpenSSL in binary distributions for Windows,
macOS, and Linux respectively, to ease installation. Due to this, cryptography will release a new version whenever
OpenSSL has a security or bug fix release to avoid shipping insecure software.

Like all our other releases, this will be announced on the mailing list and we strongly recommend that you upgrade as
soon as possible.

2.12.7 Disclosure Process

When we become aware of a security bug in cryptography, we will endeavor to fix it and issue a release as quickly
as possible. We will generally issue a new release for any security issue.

The steps for issuing a security release are described in our Doing a release documentation.

316 Chapter 2. Layout

https://github.com/pyca/cryptography/security/advisories/new
https://github.com/pyca/cryptography

Cryptography Documentation, Release 43.0.0.dev1

2.13 Known security limitations

2.13.1 Secure memory wiping

Memory wiping is used to protect secret data or key material from attackers with access to deallocated memory. This
is a defense-in-depth measure against vulnerabilities that leak application memory.

Many cryptography APIs which accept bytes also accept types which implement the buffer interface. Thus, users
wishing to do so can pass memoryview or another mutable type to cryptography APIs, and overwrite the contents
once the data is no longer needed.

However, cryptography does not clear memory by default, as there is no way to clear immutable structures such as
bytes. As a result, cryptography, like almost all software in Python is potentially vulnerable to this attack. The
CERT secure coding guidelines assesses this issue as “Severity: medium, Likelihood: unlikely, Remediation Cost:
expensive to repair” and we do not consider this a high risk for most users.

2.13.2 RSA PKCS1 v1.5 constant time decryption

RSA decryption has several different modes, one of which is PKCS1 v1.5. When used in online contexts, a secure
protocol implementation requires that peers not be able to tell whether RSA PKCS1 v1.5 decryption failed or succeeded,
even by timing variability.

cryptography does not provide an API that makes this possible, due to the fact that RSA decryption raises an exception
on failure, which takes a different amount of time than returning a value in the success case.

Fixing this would require a new API in cryptography, but OpenSSL does not expose an API for straightforwardly
implementing this while reusing its own constant-time logic. See issue 6167 for more information.

For this reason we recommend not implementing online protocols that use RSA PKCS1 v1.5 decryption with
cryptography – independent of this limitation, such protocols generally have poor security properties due to their
lack of forward security.

2.14 API stability

From its first release, cryptography has had a strong API stability policy.

2.14.1 What does this policy cover?

This policy includes any API or behavior that is documented in this documentation.

2.14.2 What does “stable” mean?

• Public APIs will not be removed or renamed without providing a compatibility alias.

• The behavior of existing APIs will not change.

2.13. Known security limitations 317

https://devblogs.microsoft.com/oldnewthing/?p=4223
https://wiki.sei.cmu.edu/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources
https://github.com/pyca/cryptography/issues/6167#issuecomment-1276151799

Cryptography Documentation, Release 43.0.0.dev1

2.14.3 What doesn’t this policy cover?

• We may add new features, things like the result of dir(obj)) or the contents of obj.__dict__ may change.

• Objects are not guaranteed to be pickleable, and pickled objects from one version of cryptography may not be
loadable in future versions.

• Unless otherwise documented, types in cryptography are not intended to be sub-classed, and we do not guar-
antee that behavior with respect to sub-classes will be stable.

• Development versions of cryptography. Before a feature is in a release, it is not covered by this policy and
may change.

Security

One exception to our API stability policy is for security. We will violate this policy as necessary in order to resolve a
security issue or harden cryptography against a possible attack.

2.14.4 Versioning

Version 35.0.0+

Beginning with release 35.0.0 cryptography uses a Firefox-inspired version scheme.

Given a version cryptography X.Y.Z,

• X indicates the major version number. This is incremented on any feature release.

• Y is always 0.

• Z is an integer that is incremented for minor backward-compatible releases (such as fixing security issues or
correcting regressions in a major release).

This scheme is compatible with SemVer, though many major releases will not include any backwards-incompatible
changes.

Deprecation

From time to time we will want to change the behavior of an API or remove it entirely. In that case, here’s how the
process will work:

• In cryptography X.0.0 the feature exists.

• In cryptography (X + 1).0.0 using that feature will emit a CryptographyDeprecationWarning (base
class UserWarning).

• In cryptography (X + 2).0.0 using that feature will emit a CryptographyDeprecationWarning.

• In cryptography (X + 3).0.0 the feature will be removed or changed.

In short, code that runs without warnings will always continue to work for a period of two major releases.

From time to time, we may decide to deprecate an API that is particularly widely used. In these cases, we may decide
to provide an extended deprecation period, at our discretion.

318 Chapter 2. Layout

https://semver.org/

Cryptography Documentation, Release 43.0.0.dev1

Previous Scheme

Before version 35.0.0 this project uses a custom versioning scheme as described below.

Given a version cryptography X.Y.Z,

• X.Y is a decimal number that is incremented for potentially-backwards-incompatible releases.

– This increases like a standard decimal. In other words, 0.9 is the ninth release, and 1.0 is the tenth (not
0.10). The dividing decimal point can effectively be ignored.

• Z is an integer that is incremented for backward-compatible releases.

2.15 Doing a release

Doing a release of cryptography requires a few steps.

2.15.1 Security Releases

In addition to the other steps described below, for a release which fixes a security vulnerability, you should also include
the following steps:

• Request a CVE from MITRE. Once you have received the CVE, it should be included in the Changelog. Ideally
you should request the CVE before starting the release process so that the CVE is available at the time of the
release.

• Document the CVE in the git commit that fixes the issue.

• Ensure that the Changelog entry credits whoever reported the issue and contains the assigned CVE.

• Publish a GitHub Security Advisory on the repository with all relevant information.

• The release should be announced on the oss-security mailing list, in addition to the regular announcement lists.

2.15.2 Verifying OpenSSL version

The release process creates wheels bundling OpenSSL for Windows, macOS, and Linux. Check that the Windows,
macOS, and Linux builders (the manylinux containers) have the latest OpenSSL. If anything is out of date follow the
instructions for upgrading OpenSSL.

2.15.3 Upgrading OpenSSL

Use the upgrading OpenSSL issue template.

2.15. Doing a release 319

https://cveform.mitre.org/
https://www.openwall.com/lists/oss-security/
https://github.com/pyca/cryptography/issues/new?template=openssl-release.md

Cryptography Documentation, Release 43.0.0.dev1

2.15.4 Bumping the version number

The next step in doing a release is bumping the version number in the software.

• Run python release.py bump-version {new_version}

• Set the release date in the Changelog.

• Do a commit indicating this.

• Send a pull request with this.

• Wait for it to be merged.

2.15.5 Performing the release

The commit that merged the version number bump is now the official release commit for this release. You will need to
have git configured to perform signed tags. Once this has happened:

• Run python release.py release.

The release should now be available on PyPI and a tag should be available in the repository.

2.15.6 Verifying the release

You should verify that pip install cryptography works correctly:

>>> import cryptography
>>> cryptography.__version__
'...'
>>> import cryptography_vectors
>>> cryptography_vectors.__version__
'...'

Verify that this is the version you just released.

For the Windows wheels check the builds for the cryptography-wheel-builder job and verify that the final output
for each build shows it loaded and linked the expected OpenSSL version.

2.15.7 Post-release tasks

• Send an email to the mailing list and python-announce announcing the release.

• Close the milestone for the previous release on GitHub.

• For major version releases, send a pull request to pyOpenSSL increasing the maximum cryptography version
pin and perform a pyOpenSSL release.

• Update the version number to the next major (e.g. 0.5.dev1) with python release.py bump-version
{new_version}.

• Add new Changelog entry with next version and note that it is under active development

• Send a pull request with these items

• Check for any outstanding code undergoing a deprecation cycle by looking in cryptography.utils for
DeprecatedIn** definitions. If any exist open a ticket to increment them for the next release.

320 Chapter 2. Layout

https://mail.python.org/mailman/listinfo/cryptography-dev
https://mail.python.org/mailman3/lists/python-announce-list.python.org/
https://github.com/pyca/cryptography/milestones

Cryptography Documentation, Release 43.0.0.dev1

2.16 Community

You can find cryptography all over the web:

• Mailing list

• Source code

• Issue tracker

• Documentation

• IRC: #pyca on irc.libera.chat

Wherever we interact, we adhere to the Python Community Code of Conduct.

2.17 Glossary

A-label
The ASCII compatible encoded (ACE) representation of an internationalized (unicode) domain name. A-labels
begin with the prefix xn--. To create an A-label from a unicode domain string use a library like idna.

authentication
The process of verifying that a message was created by a specific individual (or program). Like encryption,
authentication can be either symmetric or asymmetric. Authentication is necessary for effective encryption.

bits
A bit is binary value – a value that has only two possible states. Typically binary values are represented visually
as 0 or 1, but remember that their actual value is not a printable character. A byte on modern computers is 8 bits
and represents 256 possible values. In cryptographic applications when you see something say it requires a 128
bit key, you can calculate the number of bytes by dividing by 8. 128 divided by 8 is 16, so a 128 bit key is a 16
byte key.

bytes-like
A bytes-like object contains binary data and supports the buffer protocol. This includes bytes, bytearray, and
memoryview objects. It is unsafe to pass a mutable object (e.g., a bytearray or other implementor of the buffer
protocol) and to mutate it concurrently with the operation it has been provided for.

ciphertext
The encoded data, it’s not user readable. Potential attackers are able to see this.

ciphertext indistinguishability
This is a property of encryption systems whereby two encrypted messages aren’t distinguishable without knowing
the encryption key. This is considered a basic, necessary property for a working encryption system.

decryption
The process of converting ciphertext to plaintext.

encryption
The process of converting plaintext to ciphertext.

key
Secret data is encoded with a function using this key. Sometimes multiple keys are used. These must be kept
secret, if a key is exposed to an attacker, any data encrypted with it will be exposed.

nonce
A nonce is a number used once. Nonces are used in many cryptographic protocols. Generally, a nonce does not
have to be secret or unpredictable, but it must be unique. A nonce is often a random or pseudo-random number

2.16. Community 321

https://mail.python.org/mailman/listinfo/cryptography-dev
https://github.com/pyca/cryptography
https://github.com/pyca/cryptography/issues
https://cryptography.io/
https://www.python.org/psf/codeofconduct/
https://pypi.org/project/idna/
https://docs.python.org/3/c-api/buffer.html
https://alexgaynor.net/2022/oct/23/buffers-on-the-edge/

Cryptography Documentation, Release 43.0.0.dev1

(see Random number generation). Since a nonce does not have to be unpredictable, it can also take a form of a
counter.

opaque key
An opaque key is a type of key that allows you to perform cryptographic operations such as encryption, decryp-
tion, signing, and verification, but does not allow access to the key itself. Typically an opaque key is loaded from
a hardware security module (HSM).

plaintext
User-readable data you care about.

private key
This is one of two keys involved in public-key cryptography. It can be used to decrypt messages which were
encrypted with the corresponding public key, as well as to create signatures, which can be verified with the cor-
responding public key. These must be kept secret, if they are exposed, all encrypted messages are compromised,
and an attacker will be able to forge signatures.

public key
This is one of two keys involved in public-key cryptography. It can be used to encrypt messages for someone
possessing the corresponding private key and to verify signatures created with the corresponding private key.
This can be distributed publicly, hence the name.

public-key cryptography
asymmetric cryptography

Cryptographic operations where encryption and decryption use different keys. There are separate encryption
and decryption keys. Typically encryption is performed using a public key, and it can then be decrypted using
a private key. Asymmetric cryptography can also be used to create signatures, which can be generated with a
private key and verified with a public key.

symmetric cryptography
Cryptographic operations where encryption and decryption use the same key.

U-label
The presentational unicode form of an internationalized domain name. U-labels use unicode characters outside
the ASCII range and are encoded as A-labels when stored in certificates.

unsafe
This is a term used to describe an operation where the user must ensure that the input is correct. Failure to do so
can result in crashes, hangs, and other security issues.

Note: cryptography has not been subjected to an external audit of its code or documentation. If you’re interested in
discussing an audit please get in touch.

322 Chapter 2. Layout

https://en.wikipedia.org/wiki/Hardware_security_module

PYTHON MODULE INDEX

c
cryptography.hazmat.decrepit.ciphers, 208
cryptography.hazmat.primitives.asymmetric.dsa,

132
cryptography.hazmat.primitives.asymmetric.ec,

101
cryptography.hazmat.primitives.asymmetric.padding,

118
cryptography.hazmat.primitives.asymmetric.rsa,

114
cryptography.hazmat.primitives.ciphers, 188
cryptography.hazmat.primitives.ciphers.aead,

82
cryptography.hazmat.primitives.ciphers.modes,

192
cryptography.hazmat.primitives.hashes, 183
cryptography.hazmat.primitives.kdf, 160
cryptography.hazmat.primitives.keywrap, 176
cryptography.hazmat.primitives.padding, 200
cryptography.hazmat.primitives.serialization,

137
cryptography.x509.verification, 24

323

Cryptography Documentation, Release 43.0.0.dev1

324 Python Module Index

INDEX

A
A-label, 321
aa_compromise (cryptography.x509.ReasonFlags

attribute), 65
ACCEPTABLE_RESPONSES (cryptogra-

phy.x509.oid.OCSPExtensionOID attribute),
80

access_location (cryptogra-
phy.x509.AccessDescription attribute), 63

access_method (cryptography.x509.AccessDescription
attribute), 63

AccessDescription (class in cryptography.x509), 63
add_attribute() (cryptogra-

phy.x509.CertificateSigningRequestBuilder
method), 47

add_certificate() (cryptogra-
phy.hazmat.primitives.serialization.pkcs7.PKCS7SignatureBuilder
method), 152

add_certificate() (cryptogra-
phy.x509.ocsp.OCSPRequestBuilder method),
14

add_certificate_by_hash() (cryptogra-
phy.x509.ocsp.OCSPRequestBuilder method),
14

add_critical_option() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificateBuilder
method), 147

add_extension() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificateBuilder
method), 147

add_extension() (cryptogra-
phy.x509.CertificateBuilder method), 40

add_extension() (cryptogra-
phy.x509.CertificateRevocationListBuilder
method), 44

add_extension() (cryptogra-
phy.x509.CertificateSigningRequestBuilder
method), 47

add_extension() (cryptogra-
phy.x509.ocsp.OCSPRequestBuilder method),
15

add_extension() (cryptogra-

phy.x509.ocsp.OCSPResponseBuilder method),
17

add_extension() (cryptogra-
phy.x509.RevokedCertificateBuilder method),
46

add_response() (cryptogra-
phy.x509.ocsp.OCSPResponseBuilder method),
16

add_revoked_certificate() (cryptogra-
phy.x509.CertificateRevocationListBuilder
method), 44

add_signer() (cryptogra-
phy.hazmat.primitives.serialization.pkcs7.PKCS7SignatureBuilder
method), 152

additional_certs (cryptogra-
phy.hazmat.primitives.serialization.pkcs12.PKCS12KeyAndCertificates
attribute), 150

AEADCipherContext (class in cryptogra-
phy.hazmat.primitives.ciphers), 198

AEADDecryptionContext (class in cryptogra-
phy.hazmat.primitives.ciphers), 198

AEADEncryptionContext (class in cryptogra-
phy.hazmat.primitives.ciphers), 198

AES (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
189

AES128 (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
189

AES256 (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
189

aes_key_unwrap() (in module cryptogra-
phy.hazmat.primitives.keywrap), 176

aes_key_unwrap_with_padding() (in module cryp-
tography.hazmat.primitives.keywrap), 176

aes_key_wrap() (in module cryptogra-
phy.hazmat.primitives.keywrap), 176

aes_key_wrap_with_padding() (in module cryptogra-
phy.hazmat.primitives.keywrap), 176

AESCCM (class in cryptogra-
phy.hazmat.primitives.ciphers.aead), 88

325

Cryptography Documentation, Release 43.0.0.dev1

AESGCM (class in cryptogra-
phy.hazmat.primitives.ciphers.aead), 83

AESGCMSIV (class in cryptogra-
phy.hazmat.primitives.ciphers.aead), 84

AESOCB3 (class in cryptogra-
phy.hazmat.primitives.ciphers.aead), 86

AESSIV (class in cryptogra-
phy.hazmat.primitives.ciphers.aead), 87

affiliation_changed (cryptogra-
phy.x509.ReasonFlags attribute), 64

AfterFixed (cryptogra-
phy.hazmat.primitives.kdf.kbkdf.CounterLocation
attribute), 173

algorithm (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveSignatureAlgorithm
attribute), 108

algorithm (cryptogra-
phy.hazmat.primitives.asymmetric.padding.OAEP
attribute), 119

algorithm (cryptogra-
phy.hazmat.primitives.hashes.HashContext
attribute), 187

AlreadyFinalized (class in cryptography.exceptions),
207

AlreadyUpdated (class in cryptography.exceptions),
207

ANONYMOUS (cryptogra-
phy.x509.certificate_transparency.SignatureAlgorithm
attribute), 14

ANSIX923 (class in cryptogra-
phy.hazmat.primitives.padding), 201

ANY_EXTENDED_KEY_USAGE (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 76

ANY_POLICY (cryptogra-
phy.x509.oid.CertificatePoliciesOID attribute),
78

ARC4 (class in cryptography.hazmat.decrepit.ciphers),
208

ARC4 (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
191

asymmetric cryptography, 322
AsymmetricPadding (class in cryptogra-

phy.hazmat.primitives.asymmetric.padding),
118

Attribute (class in cryptography.x509), 72
AttributeNotFound (class in cryptography.x509), 81
AttributeOID (class in cryptography.x509.oid), 80
Attributes (class in cryptography.x509), 72
attributes (cryptogra-

phy.x509.CertificateSigningRequest attribute),
42

authenticate_additional_data() (cryptogra-

phy.hazmat.primitives.ciphers.AEADCipherContext
method), 198

authentication, 321
authority_cert_issuer (cryptogra-

phy.x509.AuthorityKeyIdentifier attribute),
58

authority_cert_serial_number (cryptogra-
phy.x509.AuthorityKeyIdentifier attribute),
58

AUTHORITY_INFORMATION_ACCESS (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

AUTHORITY_KEY_IDENTIFIER (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

AuthorityInformationAccess (class in cryptogra-
phy.x509), 62

AuthorityInformationAccessOID (class in cryptog-
raphy.x509.oid), 77

AuthorityKeyIdentifier (class in cryptogra-
phy.x509), 58

AUTO (cryptography.hazmat.primitives.asymmetric.padding.PSS
attribute), 118

B
BASIC_CONSTRAINTS (cryptogra-

phy.x509.oid.ExtensionOID attribute), 78
BasicConstraints (class in cryptography.x509), 56
BeforeFixed (cryptogra-

phy.hazmat.primitives.kdf.kbkdf.CounterLocation
attribute), 173

BestAvailableEncryption (class in cryptogra-
phy.hazmat.primitives.serialization), 156

Binary (cryptography.hazmat.primitives.serialization.pkcs7.PKCS7Options
attribute), 152

bits, 321
BLAKE2b (class in cryptogra-

phy.hazmat.primitives.hashes), 185
BLAKE2s (class in cryptogra-

phy.hazmat.primitives.hashes), 185
block_size (cryptogra-

phy.hazmat.primitives.ciphers.BlockCipherAlgorithm
attribute), 199

BlockCipherAlgorithm (class in cryptogra-
phy.hazmat.primitives.ciphers), 199

Blowfish (class in cryptogra-
phy.hazmat.decrepit.ciphers), 209

Blowfish (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
191

BrainpoolP256R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

BRAINPOOLP256R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 112

326 Index

Cryptography Documentation, Release 43.0.0.dev1

BrainpoolP384R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

BRAINPOOLP384R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

BrainpoolP512R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

BRAINPOOLP512R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

build() (cryptography.hazmat.primitives.serialization.KeySerializationEncryptionBuilder
method), 157

build() (cryptography.x509.ocsp.OCSPRequestBuilder
method), 15

build() (cryptography.x509.RevokedCertificateBuilder
method), 46

build_client_verifier() (cryptogra-
phy.x509.verification.PolicyBuilder method),
28

build_server_verifier() (cryptogra-
phy.x509.verification.PolicyBuilder method),
28

build_unsuccessful() (cryptogra-
phy.x509.ocsp.OCSPResponseBuilder class
method), 18

BUSINESS_CATEGORY (cryptography.x509.oid.NameOID
attribute), 74

bytes_eq() (in module cryptogra-
phy.hazmat.primitives.constant_time), 159

bytes-like, 321

C
ca (cryptography.x509.BasicConstraints attribute), 56
ca_compromise (cryptography.x509.ReasonFlags

attribute), 64
CA_ISSUERS (cryptogra-

phy.x509.oid.AuthorityInformationAccessOID
attribute), 77

CA_REPOSITORY (cryptogra-
phy.x509.oid.SubjectInformationAccessOID
attribute), 77

calculate_max_pss_salt_length()
(in module cryptogra-
phy.hazmat.primitives.asymmetric.padding),
119

Camellia (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
189

CAST5 (class in cryptography.hazmat.decrepit.ciphers),
208

CAST5 (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
190

CBC (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 192

cert (cryptography.hazmat.primitives.serialization.pkcs12.PKCS12KeyAndCertificates
attribute), 150

Certificate (class in cryptography.x509), 30
certificate (cryptogra-

phy.hazmat.primitives.serialization.pkcs12.PKCS12Certificate
attribute), 149

certificate_hold (cryptography.x509.ReasonFlags
attribute), 65

CERTIFICATE_ISSUER (cryptogra-
phy.x509.oid.CRLEntryExtensionOID at-
tribute), 79

CERTIFICATE_POLICIES (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

certificate_status (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
20

certificate_status (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
23

CERTIFICATE_TRANSPARENCY (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 77

CertificateBuilder (class in cryptography.x509), 39
CertificateIssuer (class in cryptography.x509), 70
CertificateIssuerPrivateKeyTypes

(in module cryptogra-
phy.hazmat.primitives.asymmetric.types),
159

CertificateIssuerPublicKeyTypes (in module cryp-
tography.hazmat.primitives.asymmetric.types),
158

CertificatePolicies (class in cryptography.x509), 68
CertificatePoliciesOID (class in cryptogra-

phy.x509.oid), 77
CertificatePublicKeyTypes (in module cryptogra-

phy.hazmat.primitives.asymmetric.types), 158
CertificateRevocationList (class in cryptogra-

phy.x509), 36
CertificateRevocationListBuilder (class in cryp-

tography.x509), 43
certificates (cryptography.x509.ocsp.OCSPResponse

attribute), 20
certificates() (cryptogra-

phy.x509.ocsp.OCSPResponseBuilder method),
16

CertificateSigningRequest (class in cryptogra-
phy.x509), 41

CertificateSigningRequestBuilder (class in cryp-
tography.x509), 46

cessation_of_operation (cryptogra-
phy.x509.ReasonFlags attribute), 65

CFB (class in cryptogra-

Index 327

Cryptography Documentation, Release 43.0.0.dev1

phy.hazmat.primitives.ciphers.modes), 193
CFB8 (class in cryptogra-

phy.hazmat.primitives.ciphers.modes), 193
ChaCha20 (class in cryptogra-

phy.hazmat.primitives.ciphers.algorithms),
189

ChaCha20Poly1305 (class in cryptogra-
phy.hazmat.primitives.ciphers.aead), 82

chain (cryptography.x509.verification.VerifiedClient at-
tribute), 25

CHALLENGE_PASSWORD (cryptogra-
phy.x509.oid.AttributeOID attribute), 80

Cipher (class in cryptogra-
phy.hazmat.primitives.ciphers), 188

CipherAlgorithm (class in cryptogra-
phy.hazmat.primitives.ciphers), 199

CipherContext (class in cryptogra-
phy.hazmat.primitives.ciphers), 196

ciphertext, 321
ciphertext indistinguishability, 321
CLIENT_AUTH (cryptogra-

phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 76

ClientVerifier (class in cryptogra-
phy.x509.verification), 25

CMAC (class in cryptography.hazmat.primitives.cmac),
177

CODE_SIGNING (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 76

COMMON_NAME (cryptography.x509.oid.NameOID at-
tribute), 72

CompressedPoint (cryptogra-
phy.hazmat.primitives.serialization.PublicFormat
attribute), 155

ConcatKDFHash (class in cryptogra-
phy.hazmat.primitives.kdf.concatkdf), 163

ConcatKDFHMAC (class in cryptogra-
phy.hazmat.primitives.kdf.concatkdf), 165

content_commitment (cryptography.x509.KeyUsage
attribute), 55

copy() (cryptography.hazmat.primitives.cmac.CMAC
method), 178

copy() (cryptography.hazmat.primitives.hashes.Hash
method), 183

copy() (cryptography.hazmat.primitives.hashes.HashContext
method), 187

copy() (cryptography.hazmat.primitives.hmac.HMAC
method), 180

CounterLocation (class in cryptogra-
phy.hazmat.primitives.kdf.kbkdf), 173

CounterMode (cryptogra-
phy.hazmat.primitives.kdf.kbkdf.Mode at-
tribute), 173

COUNTRY_NAME (cryptography.x509.oid.NameOID
attribute), 72

CPS_QUALIFIER (cryptogra-
phy.x509.oid.CertificatePoliciesOID attribute),
77

CPS_USER_NOTICE (cryptogra-
phy.x509.oid.CertificatePoliciesOID attribute),
77

critical (cryptography.x509.Extension attribute), 54
critical_options (cryptogra-

phy.hazmat.primitives.serialization.SSHCertificate
attribute), 144

CRL_DISTRIBUTION_POINTS (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

crl_issuer (cryptography.x509.DistributionPoint at-
tribute), 64

crl_number (cryptography.x509.CRLNumber attribute),
66

crl_number (cryptography.x509.DeltaCRLIndicator at-
tribute), 62

CRL_NUMBER (cryptography.x509.oid.ExtensionOID at-
tribute), 79

CRL_REASON (cryptogra-
phy.x509.oid.CRLEntryExtensionOID at-
tribute), 80

crl_sign (cryptography.x509.KeyUsage attribute), 55
CRLDistributionPoints (class in cryptography.x509),

63
CRLEntryExtensionOID (class in cryptogra-

phy.x509.oid), 79
CRLNumber (class in cryptography.x509), 66
CRLReason (class in cryptography.x509), 70
cryptography.hazmat.backends.openssl.backend

(built-in variable), 314
cryptography.hazmat.decrepit.ciphers

module, 208
cryptography.hazmat.primitives.asymmetric.dsa

module, 132
cryptography.hazmat.primitives.asymmetric.ec

module, 101
cryptography.hazmat.primitives.asymmetric.padding

module, 118
cryptography.hazmat.primitives.asymmetric.rsa

module, 114
cryptography.hazmat.primitives.ciphers

module, 188
cryptography.hazmat.primitives.ciphers.aead

module, 82
cryptography.hazmat.primitives.ciphers.modes

module, 192
cryptography.hazmat.primitives.hashes

module, 183
cryptography.hazmat.primitives.kdf

module, 160

328 Index

Cryptography Documentation, Release 43.0.0.dev1

cryptography.hazmat.primitives.keywrap
module, 176

cryptography.hazmat.primitives.padding
module, 200

cryptography.hazmat.primitives.serialization
module, 137

cryptography.x509.verification
module, 24

CTR (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 192

curve (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
attribute), 109

curve (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey
attribute), 110

curve (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers
attribute), 104

D
d (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers

attribute), 121
data_encipherment (cryptography.x509.KeyUsage at-

tribute), 55
decipher_only (cryptography.x509.KeyUsage at-

tribute), 55
decode_dss_signature() (in module cryptogra-

phy.hazmat.primitives.asymmetric.utils), 157
decrypt() (cryptography.fernet.Fernet method), 6
decrypt() (cryptogra-

phy.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
method), 123

decrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESCCM
method), 90

decrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESGCM
method), 84

decrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESGCMSIV
method), 85

decrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESOCB3
method), 87

decrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESSIV
method), 88

decrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.ChaCha20Poly1305
method), 83

decrypt_at_time() (cryptography.fernet.Fernet
method), 6

decryption, 321
decryptor() (cryptogra-

phy.hazmat.primitives.ciphers.Cipher method),
188

DELTA_CRL_INDICATOR (cryptogra-
phy.x509.oid.ExtensionOID attribute), 79

DeltaCRLIndicator (class in cryptography.x509), 62
DER (cryptography.hazmat.primitives.serialization.Encoding

attribute), 155
derive() (cryptography.hazmat.primitives.kdf.concatkdf.ConcatKDFHash

method), 164
derive() (cryptography.hazmat.primitives.kdf.concatkdf.ConcatKDFHMAC

method), 165
derive() (cryptography.hazmat.primitives.kdf.hkdf.HKDF

method), 167
derive() (cryptography.hazmat.primitives.kdf.hkdf.HKDFExpand

method), 168
derive() (cryptography.hazmat.primitives.kdf.kbkdf.KBKDFCMAC

method), 172
derive() (cryptography.hazmat.primitives.kdf.kbkdf.KBKDFHMAC

method), 170
derive() (cryptography.hazmat.primitives.kdf.KeyDerivationFunction

method), 175
derive() (cryptography.hazmat.primitives.kdf.pbkdf2.PBKDF2HMAC

method), 161
derive() (cryptography.hazmat.primitives.kdf.scrypt.Scrypt

method), 163
derive() (cryptography.hazmat.primitives.kdf.x963kdf.X963KDF

method), 174
derive_private_key() (in module cryptogra-

phy.hazmat.primitives.asymmetric.ec), 101
DetachedSignature (cryptogra-

phy.hazmat.primitives.serialization.pkcs7.PKCS7Options
attribute), 152

DHParameterNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.dh), 130

DHParameters (class in cryptogra-
phy.hazmat.primitives.asymmetric.dh), 128

DHPrivateKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.dh), 129

DHPrivateNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.dh), 130

DHPublicKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.dh), 129

DHPublicNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.dh), 131

digest (cryptography.x509.SubjectKeyIdentifier at-
tribute), 60

DIGEST_LENGTH (cryptogra-
phy.hazmat.primitives.asymmetric.padding.PSS
attribute), 118

digest_size (cryptogra-
phy.hazmat.primitives.hashes.HashAlgorithm
attribute), 187

digital_signature (cryptography.x509.KeyUsage at-
tribute), 54

DirectoryName (class in cryptography.x509), 52
DistributionPoint (class in cryptography.x509), 64

Index 329

Cryptography Documentation, Release 43.0.0.dev1

dmp1 (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers
attribute), 121

dmq1 (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers
attribute), 121

DN_QUALIFIER (cryptography.x509.oid.NameOID
attribute), 73

DNSName (class in cryptography.x509), 51
DOMAIN_COMPONENT (cryptography.x509.oid.NameOID

attribute), 73
dotted_string (cryptography.x509.ObjectIdentifier at-

tribute), 51
DSA (cryptography.x509.certificate_transparency.SignatureAlgorithm

attribute), 14
DSA (cryptography.x509.oid.PublicKeyAlgorithmOID at-

tribute), 80
DSA_WITH_SHA1 (cryptogra-

phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

DSA_WITH_SHA224 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 76

DSA_WITH_SHA256 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 76

DSA_WITH_SHA384 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 76

DSA_WITH_SHA512 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 76

DSAParameterNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 134

DSAParameters (class in cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 135

DSAPrivateKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 135

DSAPrivateNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 134

DSAPublicKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 136

DSAPublicNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 134

DuplicateExtension (class in cryptography.x509), 81

E
e (cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers

attribute), 120
EC_PUBLIC_KEY (cryptogra-

phy.x509.oid.PublicKeyAlgorithmOID at-
tribute), 80

ECB (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 196

ECDH (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 104

ECDSA (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 102

ECDSA (cryptography.x509.certificate_transparency.SignatureAlgorithm
attribute), 14

ECDSA_WITH_SHA1 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA224 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA256 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA384 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA3_224 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA3_256 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA3_384 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA3_512 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ECDSA_WITH_SHA512 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

ED25519 (cryptography.x509.oid.PublicKeyAlgorithmOID
attribute), 80

ED25519 (cryptography.x509.oid.SignatureAlgorithmOID
attribute), 76

Ed25519PrivateKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.ed25519),
91

Ed25519PublicKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.ed25519),
92

ED448 (cryptography.x509.oid.PublicKeyAlgorithmOID
attribute), 80

ED448 (cryptography.x509.oid.SignatureAlgorithmOID
attribute), 76

Ed448PrivateKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.ed448),
97

Ed448PublicKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.ed448),
97

EllipticCurve (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 108

EllipticCurveOID (class in cryptogra-

330 Index

Cryptography Documentation, Release 43.0.0.dev1

phy.hazmat.primitives.asymmetric.ec), 112
EllipticCurvePrivateKey (class in cryptogra-

phy.hazmat.primitives.asymmetric.ec), 109
EllipticCurvePrivateNumbers (class in cryptogra-

phy.hazmat.primitives.asymmetric.ec), 103
EllipticCurvePublicKey (class in cryptogra-

phy.hazmat.primitives.asymmetric.ec), 110
EllipticCurvePublicNumbers (class in cryptogra-

phy.hazmat.primitives.asymmetric.ec), 104
EllipticCurveSignatureAlgorithm (class in cryp-

tography.hazmat.primitives.asymmetric.ec),
108

EMAIL_ADDRESS (cryptography.x509.oid.NameOID at-
tribute), 73

EMAIL_PROTECTION (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 76

encipher_only (cryptography.x509.KeyUsage at-
tribute), 55

encode_dss_signature() (in module cryptogra-
phy.hazmat.primitives.asymmetric.utils), 157

Encoding (class in cryptogra-
phy.hazmat.primitives.serialization), 155

encrypt() (cryptography.fernet.Fernet method), 5
encrypt() (cryptogra-

phy.hazmat.primitives.asymmetric.rsa.RSAPublicKey
method), 124

encrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESCCM
method), 89

encrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESGCM
method), 84

encrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESGCMSIV
method), 85

encrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESOCB3
method), 86

encrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESSIV
method), 88

encrypt() (cryptogra-
phy.hazmat.primitives.ciphers.aead.ChaCha20Poly1305
method), 82

encrypt_at_time() (cryptography.fernet.Fernet
method), 6

encryption, 321
encryption_builder() (cryptogra-

phy.hazmat.primitives.serialization.PrivateFormat
method), 154

encryptor() (cryptogra-
phy.hazmat.primitives.ciphers.Cipher method),
188

entry_type (cryptogra-
phy.x509.certificate_transparency.SignedCertificateTimestamp
attribute), 12

exchange() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPrivateKey
method), 129

exchange() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
method), 109

exchange() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PrivateKey
method), 95

exchange() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PrivateKey
method), 100

excluded_subtrees (cryptogra-
phy.x509.NameConstraints attribute), 58

explicit_text (cryptography.x509.UserNotice at-
tribute), 69

EXTENDED_KEY_USAGE (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

ExtendedKeyUsage (class in cryptography.x509), 56
ExtendedKeyUsageOID (class in cryptogra-

phy.x509.oid), 76
Extension (class in cryptography.x509), 53
extension_bytes (cryptogra-

phy.x509.certificate_transparency.SignedCertificateTimestamp
attribute), 13

ExtensionNotFound (class in cryptography.x509), 81
ExtensionOID (class in cryptography.x509.oid), 78
Extensions (class in cryptography.x509), 53
extensions (cryptogra-

phy.hazmat.primitives.serialization.SSHCertificate
attribute), 145

extensions (cryptography.x509.Certificate attribute),
33

extensions (cryptogra-
phy.x509.CertificateRevocationList attribute),
38

extensions (cryptogra-
phy.x509.CertificateSigningRequest attribute),
42

extensions (cryptography.x509.ocsp.OCSPRequest at-
tribute), 18

extensions (cryptography.x509.ocsp.OCSPResponse
attribute), 22

extensions (cryptography.x509.RevokedCertificate at-
tribute), 45

ExtensionType (class in cryptography.x509), 54
extract_timestamp() (cryptography.fernet.Fernet

method), 7

F
Fernet (class in cryptography.fernet), 5

Index 331

Cryptography Documentation, Release 43.0.0.dev1

finalize() (cryptogra-
phy.hazmat.primitives.ciphers.CipherContext
method), 197

finalize() (cryptogra-
phy.hazmat.primitives.cmac.CMAC method),
179

finalize() (cryptogra-
phy.hazmat.primitives.hashes.Hash method),
184

finalize() (cryptogra-
phy.hazmat.primitives.hashes.HashContext
method), 187

finalize() (cryptogra-
phy.hazmat.primitives.hmac.HMAC method),
180

finalize() (cryptogra-
phy.hazmat.primitives.padding.PaddingContext
method), 202

finalize() (cryptogra-
phy.hazmat.primitives.poly1305.Poly1305
method), 182

finalize_with_tag() (cryptogra-
phy.hazmat.primitives.ciphers.AEADDecryptionContext
method), 198

fingerprint() (cryptography.x509.Certificate
method), 30

fingerprint() (cryptogra-
phy.x509.CertificateRevocationList method),
36

FRESHEST_CRL (cryptography.x509.oid.ExtensionOID
attribute), 79

FreshestCRL (class in cryptography.x509), 63
friendly_name (cryptogra-

phy.hazmat.primitives.serialization.pkcs12.PKCS12Certificate
attribute), 149

from_encoded_point() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey
class method), 111

from_issuer_public_key() (cryptogra-
phy.x509.AuthorityKeyIdentifier class method),
58

from_issuer_subject_key_identifier() (cryp-
tography.x509.AuthorityKeyIdentifier class
method), 59

from_private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey
class method), 91

from_private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey
class method), 97

from_private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PrivateKey
class method), 94

from_private_bytes() (cryptogra-

phy.hazmat.primitives.asymmetric.x448.X448PrivateKey
class method), 99

from_public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey
class method), 92

from_public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PublicKey
class method), 97

from_public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PublicKey
class method), 95

from_public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PublicKey
class method), 100

from_public_key() (cryptogra-
phy.x509.SubjectKeyIdentifier class method),
60

from_rfc4514_string() (cryptography.x509.Name
class method), 48

full_name (cryptography.x509.DistributionPoint at-
tribute), 64

full_name (cryptography.x509.IssuingDistributionPoint
attribute), 67

G
g (cryptography.hazmat.primitives.asymmetric.dh.DHParameterNumbers

attribute), 130
g (cryptography.hazmat.primitives.asymmetric.dsa.DSAParameterNumbers

attribute), 134
GCM (class in cryptogra-

phy.hazmat.primitives.ciphers.modes), 193
GeneralName (class in cryptography.x509), 51
generate() (cryptogra-

phy.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey
class method), 91

generate() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey
class method), 97

generate() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PrivateKey
class method), 94

generate() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PrivateKey
class method), 99

generate() (cryptogra-
phy.hazmat.primitives.twofactor.hotp.HOTP
method), 203

generate() (cryptogra-
phy.hazmat.primitives.twofactor.totp.TOTP
method), 205

generate_key() (cryptography.fernet.Fernet class
method), 5

generate_key() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESCCM

332 Index

Cryptography Documentation, Release 43.0.0.dev1

class method), 89
generate_key() (cryptogra-

phy.hazmat.primitives.ciphers.aead.AESGCM
class method), 84

generate_key() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESGCMSIV
class method), 85

generate_key() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESOCB3
class method), 86

generate_key() (cryptogra-
phy.hazmat.primitives.ciphers.aead.AESSIV
class method), 87

generate_key() (cryptogra-
phy.hazmat.primitives.ciphers.aead.ChaCha20Poly1305
class method), 82

generate_parameters() (in module cryptogra-
phy.hazmat.primitives.asymmetric.dh), 128

generate_parameters() (in module cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 132

generate_private_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHParameters
method), 128

generate_private_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAParameters
method), 135

generate_private_key() (in module cryptogra-
phy.hazmat.primitives.asymmetric.dsa), 132

generate_private_key() (in module cryptogra-
phy.hazmat.primitives.asymmetric.ec), 101

generate_private_key() (in module cryptogra-
phy.hazmat.primitives.asymmetric.rsa), 114

generate_tag() (cryptogra-
phy.hazmat.primitives.poly1305.Poly1305
class method), 182

GENERATION_QUALIFIER (cryptogra-
phy.x509.oid.NameOID attribute), 73

get_attribute_for_oid() (cryptogra-
phy.x509.Attributes method), 72

get_attributes_for_oid() (cryptogra-
phy.x509.Name method), 49

get_attributes_for_oid() (cryptogra-
phy.x509.RelativeDistinguishedName method),
50

get_curve_for_oid() (in module cryptogra-
phy.hazmat.primitives.asymmetric.ec), 114

get_extension_for_class() (cryptogra-
phy.x509.Extensions method), 53

get_extension_for_oid() (cryptogra-
phy.x509.Extensions method), 53

get_provisioning_uri() (cryptogra-
phy.hazmat.primitives.twofactor.hotp.HOTP
method), 204

get_provisioning_uri() (cryptogra-

phy.hazmat.primitives.twofactor.totp.TOTP
method), 206

get_revoked_certificate_by_serial_number()
(cryptography.x509.CertificateRevocationList
method), 36

get_values_for_type() (cryptogra-
phy.x509.CertificateIssuer method), 70

get_values_for_type() (cryptogra-
phy.x509.IssuerAlternativeName method),
61

get_values_for_type() (cryptogra-
phy.x509.SubjectAlternativeName method),
60

GIVEN_NAME (cryptography.x509.oid.NameOID at-
tribute), 73

GOOD (cryptography.x509.ocsp.OCSPCertStatus at-
tribute), 23

H
Hash (class in cryptography.hazmat.primitives.hashes),

183
HASH (cryptography.x509.ocsp.OCSPResponderEncoding

attribute), 23
hash_algorithm (cryptogra-

phy.x509.ocsp.OCSPRequest attribute), 18
hash_algorithm (cryptogra-

phy.x509.ocsp.OCSPResponse attribute),
21

hash_algorithm (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
24

HashAlgorithm (class in cryptogra-
phy.hazmat.primitives.hashes), 187

HashContext (class in cryptogra-
phy.hazmat.primitives.hashes), 187

HKDF (class in cryptography.hazmat.primitives.kdf.hkdf),
166

HKDFExpand (class in cryptogra-
phy.hazmat.primitives.kdf.hkdf), 168

HMAC (class in cryptography.hazmat.primitives.hmac),
179

hmac_hash() (cryptogra-
phy.hazmat.primitives.serialization.KeySerializationEncryptionBuilder
method), 156

HOST (cryptography.hazmat.primitives.serialization.SSHCertificateType
attribute), 145

HOTP (class in cryptogra-
phy.hazmat.primitives.twofactor.hotp), 203

HOTPHashTypes (in module cryptogra-
phy.hazmat.primitives.twofactor.hotp), 203

I
IDEA (class in cryptography.hazmat.decrepit.ciphers),

209

Index 333

Cryptography Documentation, Release 43.0.0.dev1

IDEA (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
192

indirect_crl (cryptogra-
phy.x509.IssuingDistributionPoint attribute),
67

INHIBIT_ANY_POLICY (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

inhibit_policy_mapping (cryptogra-
phy.x509.PolicyConstraints attribute), 66

InhibitAnyPolicy (class in cryptography.x509), 65
initialization_vector (cryptogra-

phy.hazmat.primitives.ciphers.modes.ModeWithInitializationVector
attribute), 199

INITIALS (cryptography.x509.oid.NameOID attribute),
73

INTERNAL_ERROR (cryptogra-
phy.x509.ocsp.OCSPResponseStatus attribute),
22

invalidity_date (cryptography.x509.InvalidityDate
attribute), 71

INVALIDITY_DATE (cryptogra-
phy.x509.oid.CRLEntryExtensionOID at-
tribute), 80

invalidity_date_utc (cryptogra-
phy.x509.InvalidityDate attribute), 71

InvalidityDate (class in cryptography.x509), 70
InvalidKey (class in cryptography.exceptions), 207
InvalidSignature (class in cryptography.exceptions),

207
InvalidTag (class in cryptography.exceptions), 200
InvalidToken (class in cryptography.fernet), 8
InvalidToken (class in cryptogra-

phy.hazmat.primitives.twofactor), 203
InvalidUnwrap (class in cryptogra-

phy.hazmat.primitives.keywrap), 177
InvalidVersion (class in cryptography.x509), 81
IPAddress (class in cryptography.x509), 52
IPSEC_IKE (cryptogra-

phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 77

iqmp (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers
attribute), 121

is_signature_valid (cryptogra-
phy.x509.CertificateSigningRequest attribute),
43

is_signature_valid() (cryptogra-
phy.x509.CertificateRevocationList method),
38

issuer (cryptography.x509.Certificate attribute), 32
issuer (cryptography.x509.CertificateRevocationList at-

tribute), 37
ISSUER_ALTERNATIVE_NAME (cryptogra-

phy.x509.oid.ExtensionOID attribute), 78

issuer_key_hash (cryptogra-
phy.x509.ocsp.OCSPRequest attribute), 18

issuer_key_hash (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
21

issuer_key_hash (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
24

issuer_name() (cryptography.x509.CertificateBuilder
method), 39

issuer_name() (cryptogra-
phy.x509.CertificateRevocationListBuilder
method), 43

issuer_name_hash (cryptogra-
phy.x509.ocsp.OCSPRequest attribute), 18

issuer_name_hash (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
21

issuer_name_hash (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
24

IssuerAlternativeName (class in cryptography.x509),
61

ISSUING_DISTRIBUTION_POINT (cryptogra-
phy.x509.oid.ExtensionOID attribute), 79

IssuingDistributionPoint (class in cryptogra-
phy.x509), 66

J
JURISDICTION_COUNTRY_NAME (cryptogra-

phy.x509.oid.NameOID attribute), 74
JURISDICTION_LOCALITY_NAME (cryptogra-

phy.x509.oid.NameOID attribute), 74
JURISDICTION_STATE_OR_PROVINCE_NAME (cryptog-

raphy.x509.oid.NameOID attribute), 74

K
KBKDFCMAC (class in cryptogra-

phy.hazmat.primitives.kdf.kbkdf), 171
KBKDFHMAC (class in cryptogra-

phy.hazmat.primitives.kdf.kbkdf), 169
kdf_rounds() (cryptogra-

phy.hazmat.primitives.serialization.KeySerializationEncryptionBuilder
method), 156

KERBEROS_PKINIT_KDC (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 77

key, 321
key (cryptography.hazmat.primitives.serialization.pkcs12.PKCS12KeyAndCertificates

attribute), 150
key_agreement (cryptography.x509.KeyUsage at-

tribute), 55
key_cert_algorithm() (cryptogra-

phy.hazmat.primitives.serialization.KeySerializationEncryptionBuilder

334 Index

Cryptography Documentation, Release 43.0.0.dev1

method), 156
key_cert_sign (cryptography.x509.KeyUsage at-

tribute), 55
key_compromise (cryptography.x509.ReasonFlags at-

tribute), 64
key_encipherment (cryptography.x509.KeyUsage at-

tribute), 55
key_id (cryptography.hazmat.primitives.serialization.SSHCertificate

attribute), 144
key_id() (cryptography.hazmat.primitives.serialization.SSHCertificateBuilder

method), 146
key_identifier (cryptogra-

phy.x509.AuthorityKeyIdentifier attribute),
58

key_identifier (cryptogra-
phy.x509.SubjectKeyIdentifier attribute),
59

key_size (cryptography.hazmat.primitives.asymmetric.dh.DHPrivateKey
attribute), 129

key_size (cryptography.hazmat.primitives.asymmetric.dh.DHPublicKey
attribute), 129

key_size (cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey
attribute), 136

key_size (cryptography.hazmat.primitives.asymmetric.dsa.DSAPublicKey
attribute), 136

key_size (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve
attribute), 108

key_size (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
attribute), 109

key_size (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey
attribute), 111

key_size (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
attribute), 123

key_size (cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey
attribute), 124

key_size (cryptography.hazmat.primitives.ciphers.CipherAlgorithm
attribute), 199

KEY_USAGE (cryptography.x509.oid.ExtensionOID
attribute), 78

KeyDerivationFunction (class in cryptogra-
phy.hazmat.primitives.kdf), 175

KeySerializationEncryption (class in cryptogra-
phy.hazmat.primitives.serialization), 156

KeySerializationEncryptionBuilder (class in
cryptography.hazmat.primitives.serialization),
156

KeyUsage (class in cryptography.x509), 54

L
last_update (cryptogra-

phy.x509.CertificateRevocationList attribute),
37

last_update() (cryptogra-
phy.x509.CertificateRevocationListBuilder

method), 44
last_update_utc (cryptogra-

phy.x509.CertificateRevocationList attribute),
38

load_der_ocsp_request() (in module cryptogra-
phy.x509.ocsp), 14

load_der_ocsp_response() (in module cryptogra-
phy.x509.ocsp), 16

load_der_parameters() (in module cryptogra-
phy.hazmat.primitives.serialization), 141

load_der_pkcs7_certificates()
(in module cryptogra-
phy.hazmat.primitives.serialization.pkcs7),
151

load_der_private_key() (in module cryptogra-
phy.hazmat.primitives.serialization), 140

load_der_public_key() (in module cryptogra-
phy.hazmat.primitives.serialization), 140

load_der_x509_certificate() (in module cryptogra-
phy.x509), 29

load_der_x509_crl() (in module cryptography.x509),
29

load_der_x509_csr() (in module cryptography.x509),
30

load_key_and_certificates() (in module cryptog-
raphy.hazmat.primitives.serialization.pkcs12),
147

load_pem_parameters() (in module cryptogra-
phy.hazmat.primitives.serialization), 139

load_pem_pkcs7_certificates()
(in module cryptogra-
phy.hazmat.primitives.serialization.pkcs7),
150

load_pem_private_key() (in module cryptogra-
phy.hazmat.primitives.serialization), 138

load_pem_public_key() (in module cryptogra-
phy.hazmat.primitives.serialization), 139

load_pem_x509_certificate() (in module cryptogra-
phy.x509), 28

load_pem_x509_certificates() (in module cryptog-
raphy.x509), 28

load_pem_x509_crl() (in module cryptography.x509),
29

load_pem_x509_csr() (in module cryptography.x509),
30

load_pkcs12() (in module cryptogra-
phy.hazmat.primitives.serialization.pkcs12),
148

load_ssh_private_key() (in module cryptogra-
phy.hazmat.primitives.serialization), 142

load_ssh_public_identity() (in module cryptogra-
phy.hazmat.primitives.serialization), 143

load_ssh_public_key() (in module cryptogra-
phy.hazmat.primitives.serialization), 142

Index 335

Cryptography Documentation, Release 43.0.0.dev1

LOCALITY_NAME (cryptography.x509.oid.NameOID at-
tribute), 72

log_id (cryptography.x509.certificate_transparency.SignedCertificateTimestamp
attribute), 12

LogEntryType (class in cryptogra-
phy.x509.certificate_transparency), 13

M
major_version (cryptogra-

phy.x509.MSCertificateTemplate attribute),
68

MALFORMED_REQUEST (cryptogra-
phy.x509.ocsp.OCSPResponseStatus attribute),
22

max_chain_depth (cryptogra-
phy.x509.verification.ClientVerifier attribute),
26

max_chain_depth (cryptogra-
phy.x509.verification.ServerVerifier attribute),
26

max_chain_depth() (cryptogra-
phy.x509.verification.PolicyBuilder method),
27

MAX_LENGTH (cryptogra-
phy.hazmat.primitives.asymmetric.padding.PSS
attribute), 118

MD5 (class in cryptography.hazmat.primitives.hashes),
186

MGF (class in cryptogra-
phy.hazmat.primitives.asymmetric.padding),
120

mgf (cryptography.hazmat.primitives.asymmetric.padding.OAEP
attribute), 119

mgf (cryptography.hazmat.primitives.asymmetric.padding.PSS
attribute), 119

MGF1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.padding),
120

MiddleFixed (cryptogra-
phy.hazmat.primitives.kdf.kbkdf.CounterLocation
attribute), 173

minor_version (cryptogra-
phy.x509.MSCertificateTemplate attribute),
68

Mode (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 199

Mode (class in cryptogra-
phy.hazmat.primitives.kdf.kbkdf), 173

ModeWithAuthenticationTag (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 200

ModeWithInitializationVector (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 199

ModeWithNonce (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 199

ModeWithTweak (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 200

module
cryptography.hazmat.decrepit.ciphers, 208
cryptography.hazmat.primitives.asymmetric.dsa,

132
cryptography.hazmat.primitives.asymmetric.ec,

101
cryptography.hazmat.primitives.asymmetric.padding,

118
cryptography.hazmat.primitives.asymmetric.rsa,

114
cryptography.hazmat.primitives.ciphers,

188
cryptography.hazmat.primitives.ciphers.aead,

82
cryptography.hazmat.primitives.ciphers.modes,

192
cryptography.hazmat.primitives.hashes,

183
cryptography.hazmat.primitives.kdf, 160
cryptography.hazmat.primitives.keywrap,

176
cryptography.hazmat.primitives.padding,

200
cryptography.hazmat.primitives.serialization,

137
cryptography.x509.verification, 24

MS_CERTIFICATE_TEMPLATE (cryptogra-
phy.x509.oid.ExtensionOID attribute), 79

MSCertificateTemplate (class in cryptography.x509),
68

MultiFernet (class in cryptography.fernet), 7

N
n (cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers

attribute), 120
Name (class in cryptography.x509), 48
name (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve

attribute), 108
name (cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding

attribute), 118
name (cryptography.hazmat.primitives.ciphers.CipherAlgorithm

attribute), 199
name (cryptography.hazmat.primitives.ciphers.modes.Mode

attribute), 199
name (cryptography.hazmat.primitives.hashes.HashAlgorithm

attribute), 187
NAME (cryptography.x509.ocsp.OCSPResponderEncoding

attribute), 23
NAME_CONSTRAINTS (cryptogra-

phy.x509.oid.ExtensionOID attribute), 78
NameAttribute (class in cryptography.x509), 50
NameConstraints (class in cryptography.x509), 57

336 Index

Cryptography Documentation, Release 43.0.0.dev1

NameOID (class in cryptography.x509.oid), 72
next_update (cryptogra-

phy.x509.CertificateRevocationList attribute),
37

next_update (cryptography.x509.ocsp.OCSPResponse
attribute), 21

next_update (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
24

next_update() (cryptogra-
phy.x509.CertificateRevocationListBuilder
method), 44

next_update_utc (cryptogra-
phy.x509.CertificateRevocationList attribute),
37

NoAttributes (cryptogra-
phy.hazmat.primitives.serialization.pkcs7.PKCS7Options
attribute), 153

NoCapabilities (cryptogra-
phy.hazmat.primitives.serialization.pkcs7.PKCS7Options
attribute), 152

NoCerts (cryptography.hazmat.primitives.serialization.pkcs7.PKCS7Options
attribute), 153

NoEncryption (class in cryptogra-
phy.hazmat.primitives.serialization), 156

nonce, 321
nonce (cryptography.hazmat.primitives.ciphers.modes.ModeWithNonce

attribute), 199
nonce (cryptography.hazmat.primitives.serialization.SSHCertificate

attribute), 143
nonce (cryptography.x509.OCSPAcceptableResponses

attribute), 71
nonce (cryptography.x509.OCSPNonce attribute), 71
NONCE (cryptography.x509.oid.OCSPExtensionOID at-

tribute), 80
not_valid_after (cryptography.x509.Certificate

attribute), 32
not_valid_after() (cryptogra-

phy.x509.CertificateBuilder method), 40
not_valid_after_utc (cryptography.x509.Certificate

attribute), 32
not_valid_before (cryptography.x509.Certificate at-

tribute), 31
not_valid_before() (cryptogra-

phy.x509.CertificateBuilder method), 40
not_valid_before_utc (cryptography.x509.Certificate

attribute), 31
notice_numbers (cryptography.x509.NoticeReference

attribute), 69
notice_reference (cryptography.x509.UserNotice at-

tribute), 69
NoticeReference (class in cryptography.x509), 69
NotYetFinalized (class in cryptography.exceptions),

207

O
OAEP (class in cryptogra-

phy.hazmat.primitives.asymmetric.padding),
119

ObjectIdentifier (class in cryptography.x509), 51
OCSP (cryptography.x509.oid.AuthorityInformationAccessOID

attribute), 77
OCSP_NO_CHECK (cryptography.x509.oid.ExtensionOID

attribute), 78
OCSP_SIGNING (cryptogra-

phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 76

OCSPAcceptableResponses (class in cryptogra-
phy.x509), 71

OCSPCertStatus (class in cryptography.x509.ocsp), 23
OCSPExtensionOID (class in cryptography.x509.oid), 80
OCSPNoCheck (class in cryptography.x509), 56
OCSPNonce (class in cryptography.x509), 71
OCSPRequest (class in cryptography.x509.ocsp), 18
OCSPRequestBuilder (class in cryptogra-

phy.x509.ocsp), 14
OCSPResponderEncoding (class in cryptogra-

phy.x509.ocsp), 23
OCSPResponse (class in cryptography.x509.ocsp), 19
OCSPResponseBuilder (class in cryptogra-

phy.x509.ocsp), 16
OCSPResponseStatus (class in cryptogra-

phy.x509.ocsp), 22
OCSPSingleResponse (class in cryptogra-

phy.x509.ocsp), 23
OFB (class in cryptogra-

phy.hazmat.primitives.ciphers.modes), 193
oid (cryptography.x509.Attribute attribute), 72
oid (cryptography.x509.AttributeNotFound attribute), 81
oid (cryptography.x509.AuthorityInformationAccess at-

tribute), 62
oid (cryptography.x509.AuthorityKeyIdentifier at-

tribute), 58
oid (cryptography.x509.BasicConstraints attribute), 56
oid (cryptography.x509.CertificateIssuer attribute), 70
oid (cryptography.x509.CertificatePolicies attribute), 68
oid (cryptography.x509.CRLDistributionPoints at-

tribute), 64
oid (cryptography.x509.CRLNumber attribute), 66
oid (cryptography.x509.CRLReason attribute), 70
oid (cryptography.x509.DeltaCRLIndicator attribute), 62
oid (cryptography.x509.DuplicateExtension attribute),

81
oid (cryptography.x509.ExtendedKeyUsage attribute), 56
oid (cryptography.x509.Extension attribute), 54
oid (cryptography.x509.ExtensionNotFound attribute),

81
oid (cryptography.x509.ExtensionType attribute), 54
oid (cryptography.x509.FreshestCRL attribute), 63

Index 337

Cryptography Documentation, Release 43.0.0.dev1

oid (cryptography.x509.InhibitAnyPolicy attribute), 65
oid (cryptography.x509.InvalidityDate attribute), 70
oid (cryptography.x509.IssuerAlternativeName at-

tribute), 61
oid (cryptography.x509.IssuingDistributionPoint at-

tribute), 66
oid (cryptography.x509.KeyUsage attribute), 54
oid (cryptography.x509.MSCertificateTemplate at-

tribute), 68
oid (cryptography.x509.NameAttribute attribute), 50
oid (cryptography.x509.NameConstraints attribute), 57
oid (cryptography.x509.OCSPAcceptableResponses at-

tribute), 71
oid (cryptography.x509.OCSPNoCheck attribute), 57
oid (cryptography.x509.OCSPNonce attribute), 71
oid (cryptography.x509.PolicyConstraints attribute), 65
oid (cryptography.x509.PrecertificateSignedCertificateTimestamps

attribute), 61
oid (cryptography.x509.PrecertPoison attribute), 61
oid (cryptography.x509.SignedCertificateTimestamps at-

tribute), 62
oid (cryptography.x509.SubjectAlternativeName at-

tribute), 60
oid (cryptography.x509.SubjectInformationAccess

attribute), 63
oid (cryptography.x509.SubjectKeyIdentifier attribute),

59
oid (cryptography.x509.TLSFeature attribute), 57
oid (cryptography.x509.UnrecognizedExtension at-

tribute), 67
only_contains_attribute_certs (cryptogra-

phy.x509.IssuingDistributionPoint attribute),
67

only_contains_ca_certs (cryptogra-
phy.x509.IssuingDistributionPoint attribute),
66

only_contains_user_certs (cryptogra-
phy.x509.IssuingDistributionPoint attribute),
66

only_some_reasons (cryptogra-
phy.x509.IssuingDistributionPoint attribute),
67

opaque key, 322
OpenSSH (cryptography.hazmat.primitives.serialization.Encoding

attribute), 155
OpenSSH (cryptography.hazmat.primitives.serialization.PrivateFormat

attribute), 153
OpenSSH (cryptography.hazmat.primitives.serialization.PublicFormat

attribute), 155
openssl_version_number(), 315
openssl_version_text() (cryptogra-

phy.hazmat.backends.openssl method), 315
organization (cryptography.x509.NoticeReference at-

tribute), 69

ORGANIZATION_IDENTIFIER (cryptogra-
phy.x509.oid.NameOID attribute), 73

ORGANIZATION_NAME (cryptography.x509.oid.NameOID
attribute), 73

ORGANIZATIONAL_UNIT_NAME (cryptogra-
phy.x509.oid.NameOID attribute), 73

OtherName (class in cryptography.x509), 52

P
p (cryptography.hazmat.primitives.asymmetric.dh.DHParameterNumbers

attribute), 130
p (cryptography.hazmat.primitives.asymmetric.dsa.DSAParameterNumbers

attribute), 134
p (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers

attribute), 121
padder() (cryptography.hazmat.primitives.padding.ANSIX923

method), 201
padder() (cryptography.hazmat.primitives.padding.PKCS7

method), 201
PaddingContext (class in cryptogra-

phy.hazmat.primitives.padding), 202
parameter_bytes() (cryptogra-

phy.hazmat.primitives.asymmetric.dh.DHParameters
method), 128

parameter_numbers (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPublicNumbers
attribute), 131

parameter_numbers (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPublicNumbers
attribute), 134

parameter_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHParameters
method), 128

parameter_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAParameters
method), 135

ParameterFormat (class in cryptogra-
phy.hazmat.primitives.serialization), 155

parameters() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHParameterNumbers
method), 130

parameters() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPrivateKey
method), 129

parameters() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPublicKey
method), 129

parameters() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAParameterNumbers
method), 134

parameters() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPrivateKey
method), 135

338 Index

Cryptography Documentation, Release 43.0.0.dev1

parameters() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPublicKey
method), 136

parsed_version (cryptography.x509.InvalidVersion at-
tribute), 81

path_length (cryptography.x509.BasicConstraints at-
tribute), 56

PBES (class in cryptogra-
phy.hazmat.primitives.serialization.pkcs12),
150

PBESv1SHA1And3KeyTripleDESCBC (cryptogra-
phy.hazmat.primitives.serialization.pkcs12.PBES
attribute), 150

PBESv2SHA256AndAES256CBC (cryptogra-
phy.hazmat.primitives.serialization.pkcs12.PBES
attribute), 150

PBKDF2HMAC (class in cryptogra-
phy.hazmat.primitives.kdf.pbkdf2), 160

PEM (cryptography.hazmat.primitives.serialization.Encoding
attribute), 155

permitted_subtrees (cryptogra-
phy.x509.NameConstraints attribute), 58

PKCS1 (cryptography.hazmat.primitives.serialization.PublicFormat
attribute), 154

PKCS12 (cryptography.hazmat.primitives.serialization.PrivateFormat
attribute), 153

PKCS12Certificate (class in cryptogra-
phy.hazmat.primitives.serialization.pkcs12),
149

PKCS12KeyAndCertificates (class in cryptogra-
phy.hazmat.primitives.serialization.pkcs12),
150

PKCS12PrivateKeyTypes (in module cryptogra-
phy.hazmat.primitives.serialization.pkcs12),
147

PKCS1v15 (class in cryptogra-
phy.hazmat.primitives.asymmetric.padding),
119

PKCS3 (cryptography.hazmat.primitives.serialization.ParameterFormat
attribute), 155

PKCS7 (class in cryptogra-
phy.hazmat.primitives.padding), 200

PKCS7HashTypes (in module cryptogra-
phy.hazmat.primitives.serialization.pkcs7),
150

PKCS7Options (class in cryptogra-
phy.hazmat.primitives.serialization.pkcs7),
152

PKCS7PrivateKeyTypes (in module cryptogra-
phy.hazmat.primitives.serialization.pkcs7),
150

PKCS7SignatureBuilder (class in cryptogra-
phy.hazmat.primitives.serialization.pkcs7),
151

PKCS8 (cryptography.hazmat.primitives.serialization.PrivateFormat
attribute), 153

plaintext, 322
POLICY_CONSTRAINTS (cryptogra-

phy.x509.oid.ExtensionOID attribute), 79
policy_identifier (cryptogra-

phy.x509.PolicyInformation attribute), 69
POLICY_MAPPINGS (cryptogra-

phy.x509.oid.ExtensionOID attribute), 79
policy_qualifiers (cryptogra-

phy.x509.PolicyInformation attribute), 69
PolicyBuilder (class in cryptogra-

phy.x509.verification), 27
PolicyConstraints (class in cryptography.x509), 65
PolicyInformation (class in cryptography.x509), 69
Poly1305 (class in cryptogra-

phy.hazmat.primitives.poly1305), 181
POSTAL_ADDRESS (cryptography.x509.oid.NameOID at-

tribute), 74
POSTAL_CODE (cryptography.x509.oid.NameOID at-

tribute), 74
PRE_CERTIFICATE (cryptogra-

phy.x509.certificate_transparency.LogEntryType
attribute), 13

PRECERT_POISON (cryptography.x509.oid.ExtensionOID
attribute), 79

PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS (cryp-
tography.x509.oid.ExtensionOID attribute),
79

PrecertificateSignedCertificateTimestamps
(class in cryptography.x509), 61

PrecertPoison (class in cryptography.x509), 61
Prehashed (class in cryptogra-

phy.hazmat.primitives.asymmetric.utils),
157

private key, 322
private_bytes() (cryptogra-

phy.hazmat.primitives.asymmetric.dh.DHPrivateKey
method), 129

private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPrivateKey
method), 136

private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
method), 110

private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey
method), 92

private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey
method), 97

private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
method), 123

Index 339

Cryptography Documentation, Release 43.0.0.dev1

private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PrivateKey
method), 95

private_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PrivateKey
method), 100

private_bytes_raw() (cryptogra-
phy.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey
method), 92

private_bytes_raw() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey
method), 97

private_bytes_raw() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PrivateKey
method), 95

private_bytes_raw() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PrivateKey
method), 100

private_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPrivateNumbers
method), 131

private_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPrivateNumbers
method), 135

private_key() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateNumbers
method), 104

private_key() (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers
method), 121

private_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPrivateKey
method), 129

private_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPrivateKey
method), 136

private_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
method), 110

private_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
method), 123

private_value (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateNumbers
attribute), 103

PrivateFormat (class in cryptogra-
phy.hazmat.primitives.serialization), 153

PrivateKeyTypes (in module cryptogra-
phy.hazmat.primitives.asymmetric.types),
158

privilege_withdrawn (cryptogra-
phy.x509.ReasonFlags attribute), 65

produced_at (cryptography.x509.ocsp.OCSPResponse
attribute), 20

PSEUDONYM (cryptography.x509.oid.NameOID attribute),
73

PSS (class in cryptogra-
phy.hazmat.primitives.asymmetric.padding),
118

public key, 322
public_bytes() (cryptogra-

phy.hazmat.primitives.asymmetric.dh.DHPublicKey
method), 130

public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPublicKey
method), 137

public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey
method), 110

public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey
method), 92

public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PublicKey
method), 98

public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPublicKey
method), 124

public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PublicKey
method), 96

public_bytes() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PublicKey
method), 101

public_bytes() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificate
method), 145

public_bytes() (cryptography.x509.Certificate
method), 35

public_bytes() (cryptogra-
phy.x509.CertificateRevocationList method),
38

public_bytes() (cryptogra-
phy.x509.CertificateSigningRequest method),
42

public_bytes() (cryptography.x509.ExtensionType
method), 54

public_bytes() (cryptography.x509.Name method), 49
public_bytes() (cryptogra-

phy.x509.ocsp.OCSPRequest method), 19
public_bytes() (cryptogra-

phy.x509.ocsp.OCSPResponse method),
22

public_bytes_raw() (cryptogra-
phy.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey
method), 93

public_bytes_raw() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PublicKey

340 Index

Cryptography Documentation, Release 43.0.0.dev1

method), 98
public_bytes_raw() (cryptogra-

phy.hazmat.primitives.asymmetric.x25519.X25519PublicKey
method), 96

public_bytes_raw() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PublicKey
method), 101

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPrivateKey
method), 129

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPublicNumbers
method), 131

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPrivateKey
method), 135

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPublicNumbers
method), 134

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
method), 109

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers
method), 104

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey
method), 91

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey
method), 97

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
method), 123

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers
method), 120

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.x25519.X25519PrivateKey
method), 95

public_key() (cryptogra-
phy.hazmat.primitives.asymmetric.x448.X448PrivateKey
method), 100

public_key() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificate
method), 144

public_key() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificateBuilder
method), 146

public_key() (cryptography.x509.Certificate method),
31

public_key() (cryptography.x509.CertificateBuilder
method), 40

public_key() (cryptogra-

phy.x509.CertificateSigningRequest method),
41

public_key_algorithm_oid (cryptogra-
phy.x509.Certificate attribute), 31

public_key_algorithm_oid (cryptogra-
phy.x509.CertificateSigningRequest attribute),
41

public_numbers (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPrivateNumbers
attribute), 131

public_numbers (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPrivateNumbers
attribute), 135

public_numbers (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateNumbers
attribute), 103

public_numbers (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers
attribute), 121

public_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.dh.DHPublicKey
method), 130

public_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.dsa.DSAPublicKey
method), 137

public_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey
method), 110

public_numbers() (cryptogra-
phy.hazmat.primitives.asymmetric.rsa.RSAPublicKey
method), 124

public-key cryptography, 322
PublicFormat (class in cryptogra-

phy.hazmat.primitives.serialization), 154
PublicKeyAlgorithmOID (class in cryptogra-

phy.x509.oid), 80
PublicKeyTypes (in module cryptogra-

phy.hazmat.primitives.asymmetric.types),
158

Python Enhancement Proposals
PEP 484, 226
PEP 8, 251

Q
q (cryptography.hazmat.primitives.asymmetric.dh.DHParameterNumbers

attribute), 130
q (cryptography.hazmat.primitives.asymmetric.dsa.DSAParameterNumbers

attribute), 134
q (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers

attribute), 121

R
random_serial_number() (in module cryptogra-

phy.x509), 81

Index 341

Cryptography Documentation, Release 43.0.0.dev1

Raw (cryptography.hazmat.primitives.serialization.Encoding
attribute), 156

Raw (cryptography.hazmat.primitives.serialization.PrivateFormat
attribute), 153

Raw (cryptography.hazmat.primitives.serialization.PublicFormat
attribute), 155

rdns (cryptography.x509.Name attribute), 48
reason (cryptography.x509.CRLReason attribute), 70
ReasonFlags (class in cryptography.x509), 64
reasons (cryptography.x509.DistributionPoint at-

tribute), 64
recover_data_from_signature() (cryptogra-

phy.hazmat.primitives.asymmetric.rsa.RSAPublicKey
method), 125

RegisteredID (class in cryptography.x509), 52
relative_name (cryptography.x509.DistributionPoint

attribute), 64
relative_name (cryptogra-

phy.x509.IssuingDistributionPoint attribute),
67

RelativeDistinguishedName (class in cryptogra-
phy.x509), 50

remove_from_crl (cryptography.x509.ReasonFlags at-
tribute), 65

require_explicit_policy (cryptogra-
phy.x509.PolicyConstraints attribute), 65

responder_id() (cryptogra-
phy.x509.ocsp.OCSPResponseBuilder method),
16

responder_key_hash (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
20

responder_name (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
20

response_status (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
19

responses (cryptography.x509.ocsp.OCSPResponse at-
tribute), 22

revocation_date (cryptogra-
phy.x509.RevokedCertificate attribute), 45

revocation_date() (cryptogra-
phy.x509.RevokedCertificateBuilder method),
46

revocation_date_utc (cryptogra-
phy.x509.RevokedCertificate attribute), 45

revocation_reason (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
21

revocation_reason (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
23

revocation_time (cryptogra-

phy.x509.ocsp.OCSPResponse attribute),
20

revocation_time (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
23

REVOKED (cryptography.x509.ocsp.OCSPCertStatus at-
tribute), 23

RevokedCertificate (class in cryptography.x509), 45
RevokedCertificateBuilder (class in cryptogra-

phy.x509), 46
RFC

RFC 1321, 284
RFC 1421, 249
RFC 2104, 179
RFC 2144, 285
RFC 2202, 285
RFC 2256, 73
RFC 2286, 285
RFC 2315, 150
RFC 2409, 125
RFC 2459, 9
RFC 2560, 224
RFC 2632, 151
RFC 2633, 215
RFC 2818, 72
RFC 2986, 43, 221
RFC 3279, 102, 103, 109, 133, 157
RFC 3280, 9
RFC 3370, 215
RFC 3394, 176
RFC 3447, 118, 119
RFC 3490, 275
RFC 3526, 272
RFC 3610, 89
RFC 3686, 285
RFC 4055, 75
RFC 4196, 286
RFC 4226, 203, 286
RFC 4231, 285
RFC 4253, 141, 142, 243
RFC 4269, 191, 209, 286
RFC 4346, 125
RFC 4493, 177
RFC 4514, 48–51, 221, 222, 228, 230
RFC 4519, 73
RFC 4556, 77
RFC 4945, 77
RFC 5114, 272
RFC 5246, 14
RFC 5280, 9, 34, 38, 39, 54, 57, 59, 60, 65, 66, 77,

139, 140, 221, 223, 224, 273, 274
RFC 5297, 87
RFC 5639, 107
RFC 5649, 176, 177

342 Index

Cryptography Documentation, Release 43.0.0.dev1

RFC 5869, 167, 285, 308
RFC 5895, 275
RFC 6066, 57
RFC 6070, 285
RFC 6229, 285, 291
RFC 6238, 205, 286
RFC 6960, 14, 224
RFC 6961, 57
RFC 6962, 12, 35, 77
RFC 6979, 102, 215, 243, 255
RFC 7027, 272
RFC 7253, 86, 285
RFC 7292, 147
RFC 7539, 82, 181, 189, 286
RFC 7633, 57
RFC 7693, 185
RFC 7748, 255
RFC 7914, 162
RFC 8032, 255
RFC 8410, 274
RFC 8452, 85
RFC 8998, 286

rfc4514_attribute_name (cryptogra-
phy.x509.NameAttribute attribute), 50

rfc4514_string() (cryptography.x509.Name method),
49

rfc4514_string() (cryptography.x509.NameAttribute
method), 50

rfc4514_string() (cryptogra-
phy.x509.RelativeDistinguishedName method),
51

RFC822Name (class in cryptography.x509), 51
rotate() (cryptography.fernet.MultiFernet method), 7
RSA (cryptography.x509.certificate_transparency.SignatureAlgorithm

attribute), 14
rsa_crt_dmp1() (in module cryptogra-

phy.hazmat.primitives.asymmetric.rsa), 122
rsa_crt_dmq1() (in module cryptogra-

phy.hazmat.primitives.asymmetric.rsa), 122
rsa_crt_iqmp() (in module cryptogra-

phy.hazmat.primitives.asymmetric.rsa), 122
rsa_recover_prime_factors() (in module cryptogra-

phy.hazmat.primitives.asymmetric.rsa), 122
RSA_WITH_MD5 (cryptogra-

phy.x509.oid.SignatureAlgorithmOID at-
tribute), 74

RSA_WITH_SHA1 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 74

RSA_WITH_SHA224 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 74

RSA_WITH_SHA256 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-

tribute), 74
RSA_WITH_SHA384 (cryptogra-

phy.x509.oid.SignatureAlgorithmOID at-
tribute), 74

RSA_WITH_SHA3_224 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 74

RSA_WITH_SHA3_256 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

RSA_WITH_SHA3_384 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

RSA_WITH_SHA3_512 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

RSA_WITH_SHA512 (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 74

RSAES_PKCS1_v1_5 (cryptogra-
phy.x509.oid.PublicKeyAlgorithmOID at-
tribute), 80

RSAPrivateKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.rsa), 123

RSAPrivateNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.rsa), 120

RSAPublicKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.rsa), 124

RSAPublicNumbers (class in cryptogra-
phy.hazmat.primitives.asymmetric.rsa), 120

RSASSA_PSS (cryptogra-
phy.x509.oid.PublicKeyAlgorithmOID at-
tribute), 80

RSASSA_PSS (cryptogra-
phy.x509.oid.SignatureAlgorithmOID at-
tribute), 75

S
Scrypt (class in cryptogra-

phy.hazmat.primitives.kdf.scrypt), 162
SECP192R1 (class in cryptogra-

phy.hazmat.primitives.asymmetric.ec), 107
SECP192R1 (cryptogra-

phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 112

SECP224R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECP224R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 112

SECP256K1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECP256K1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID

Index 343

Cryptography Documentation, Release 43.0.0.dev1

attribute), 112
SECP256R1 (class in cryptogra-

phy.hazmat.primitives.asymmetric.ec), 106
SECP256R1 (cryptogra-

phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 112

SECP384R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 106

SECP384R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 112

SECP521R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECP521R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 112

SECT163K1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECT163K1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT163R2 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 108

SECT163R2 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT233K1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECT233K1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT233R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 108

SECT233R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT283K1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECT283K1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT283R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 108

SECT283R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT409K1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECT409K1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT409R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 108

SECT409R1 (cryptogra-

phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT571K1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 107

SECT571K1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SECT571R1 (class in cryptogra-
phy.hazmat.primitives.asymmetric.ec), 108

SECT571R1 (cryptogra-
phy.hazmat.primitives.asymmetric.ec.EllipticCurveOID
attribute), 113

SEED (class in cryptography.hazmat.decrepit.ciphers),
209

SEED (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
190

serial (cryptography.hazmat.primitives.serialization.SSHCertificate
attribute), 144

serial() (cryptography.hazmat.primitives.serialization.SSHCertificateBuilder
method), 146

serial_number (cryptography.x509.Certificate at-
tribute), 31

serial_number (cryptography.x509.ocsp.OCSPRequest
attribute), 18

serial_number (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
22

serial_number (cryptogra-
phy.x509.ocsp.OCSPSingleResponse attribute),
24

SERIAL_NUMBER (cryptography.x509.oid.NameOID at-
tribute), 73

serial_number (cryptography.x509.RevokedCertificate
attribute), 45

serial_number() (cryptogra-
phy.x509.CertificateBuilder method), 40

serial_number() (cryptogra-
phy.x509.RevokedCertificateBuilder method),
46

serialize_certificates() (in module cryptogra-
phy.hazmat.primitives.serialization.pkcs7), 151

serialize_key_and_certificates()
(in module cryptogra-
phy.hazmat.primitives.serialization.pkcs12),
148

SERVER_AUTH (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 76

ServerVerifier (class in cryptogra-
phy.x509.verification), 26

set_data() (cryptogra-
phy.hazmat.primitives.serialization.pkcs7.PKCS7SignatureBuilder
method), 152

344 Index

Cryptography Documentation, Release 43.0.0.dev1

SHA1 (class in cryptography.hazmat.primitives.hashes),
186

SHA224 (class in cryptogra-
phy.hazmat.primitives.hashes), 184

SHA256 (class in cryptogra-
phy.hazmat.primitives.hashes), 184

SHA384 (class in cryptogra-
phy.hazmat.primitives.hashes), 184

SHA3_224 (class in cryptogra-
phy.hazmat.primitives.hashes), 185

SHA3_256 (class in cryptogra-
phy.hazmat.primitives.hashes), 185

SHA3_384 (class in cryptogra-
phy.hazmat.primitives.hashes), 185

SHA3_512 (class in cryptogra-
phy.hazmat.primitives.hashes), 185

SHA512 (class in cryptogra-
phy.hazmat.primitives.hashes), 184

SHA512_224 (class in cryptogra-
phy.hazmat.primitives.hashes), 184

SHA512_256 (class in cryptogra-
phy.hazmat.primitives.hashes), 184

SHAKE128 (class in cryptogra-
phy.hazmat.primitives.hashes), 186

SHAKE256 (class in cryptogra-
phy.hazmat.primitives.hashes), 186

SIG_REQUIRED (cryptogra-
phy.x509.ocsp.OCSPResponseStatus attribute),
23

sign() (cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey
method), 136

sign() (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
method), 109

sign() (cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey
method), 91

sign() (cryptography.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey
method), 97

sign() (cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
method), 123

sign() (cryptography.hazmat.primitives.serialization.pkcs7.PKCS7SignatureBuilder
method), 152

sign() (cryptography.hazmat.primitives.serialization.SSHCertificateBuilder
method), 147

sign() (cryptography.x509.CertificateBuilder method),
40

sign() (cryptography.x509.CertificateRevocationListBuilder
method), 44

sign() (cryptography.x509.CertificateSigningRequestBuilder
method), 47

sign() (cryptography.x509.ocsp.OCSPResponseBuilder
method), 17

signature (cryptography.x509.Certificate attribute), 34
signature (cryptogra-

phy.x509.certificate_transparency.SignedCertificateTimestamp

attribute), 13
signature (cryptogra-

phy.x509.CertificateRevocationList attribute),
38

signature (cryptogra-
phy.x509.CertificateSigningRequest attribute),
42

signature (cryptography.x509.ocsp.OCSPResponse at-
tribute), 19

signature_algorithm (cryptogra-
phy.x509.certificate_transparency.SignedCertificateTimestamp
attribute), 13

signature_algorithm_oid (cryptogra-
phy.x509.Certificate attribute), 33

signature_algorithm_oid (cryptogra-
phy.x509.CertificateRevocationList attribute),
36

signature_algorithm_oid (cryptogra-
phy.x509.CertificateSigningRequest attribute),
41

signature_algorithm_oid (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
19

signature_algorithm_parameters (cryptogra-
phy.x509.Certificate attribute), 33

signature_algorithm_parameters (cryptogra-
phy.x509.CertificateRevocationList attribute),
37

signature_algorithm_parameters (cryptogra-
phy.x509.CertificateSigningRequest attribute),
42

signature_hash_algorithm (cryptogra-
phy.x509.Certificate attribute), 32

signature_hash_algorithm (cryptogra-
phy.x509.certificate_transparency.SignedCertificateTimestamp
attribute), 13

signature_hash_algorithm (cryptogra-
phy.x509.CertificateRevocationList attribute),
36

signature_hash_algorithm (cryptogra-
phy.x509.CertificateSigningRequest attribute),
41

signature_hash_algorithm (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
19

signature_key() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificate
method), 145

SignatureAlgorithm (class in cryptogra-
phy.x509.certificate_transparency), 13

SignatureAlgorithmOID (class in cryptogra-
phy.x509.oid), 74

SIGNED_CERTIFICATE_TIMESTAMPS (cryptogra-
phy.x509.oid.ExtensionOID attribute), 79

Index 345

Cryptography Documentation, Release 43.0.0.dev1

SignedCertificateTimestamp (class in cryptogra-
phy.x509.certificate_transparency), 12

SignedCertificateTimestamps (class in cryptogra-
phy.x509), 61

single_extensions (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
22

skip_certs (cryptography.x509.InhibitAnyPolicy
attribute), 65

SM3 (class in cryptography.hazmat.primitives.hashes),
187

SM4 (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
191

SMARTCARD_LOGON (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 77

SMIME (cryptography.hazmat.primitives.serialization.Encoding
attribute), 156

SSHCertificate (class in cryptogra-
phy.hazmat.primitives.serialization), 143

SSHCertificateBuilder (class in cryptogra-
phy.hazmat.primitives.serialization), 145

SSHCertificateType (class in cryptogra-
phy.hazmat.primitives.serialization), 145

SSHCertPrivateKeyTypes (in module cryptogra-
phy.hazmat.primitives.serialization), 143

SSHCertPublicKeyTypes (in module cryptogra-
phy.hazmat.primitives.serialization), 143

SSHPrivateKeyTypes (in module cryptogra-
phy.hazmat.primitives.serialization), 142

SSHPublicKeyTypes (in module cryptogra-
phy.hazmat.primitives.serialization), 141

STATE_OR_PROVINCE_NAME (cryptogra-
phy.x509.oid.NameOID attribute), 72

status_request (cryptography.x509.TLSFeatureType
attribute), 57

status_request_v2 (cryptogra-
phy.x509.TLSFeatureType attribute), 57

Store (class in cryptography.x509.verification), 25
store (cryptography.x509.verification.ClientVerifier at-

tribute), 26
store (cryptography.x509.verification.ServerVerifier at-

tribute), 27
store() (cryptography.x509.verification.PolicyBuilder

method), 27
STREET_ADDRESS (cryptography.x509.oid.NameOID at-

tribute), 73
Subject (class in cryptography.x509.verification), 25
subject (cryptography.x509.Certificate attribute), 32
subject (cryptography.x509.CertificateSigningRequest

attribute), 41
subject (cryptography.x509.verification.ServerVerifier

attribute), 26

SUBJECT_ALTERNATIVE_NAME (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

SUBJECT_DIRECTORY_ATTRIBUTES (cryptogra-
phy.x509.oid.ExtensionOID attribute), 79

SUBJECT_INFORMATION_ACCESS (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

SUBJECT_KEY_IDENTIFIER (cryptogra-
phy.x509.oid.ExtensionOID attribute), 78

subject_name() (cryptography.x509.CertificateBuilder
method), 39

subject_name() (cryptogra-
phy.x509.CertificateSigningRequestBuilder
method), 47

SubjectAlternativeName (class in cryptogra-
phy.x509), 60

SubjectInformationAccess (class in cryptogra-
phy.x509), 62

SubjectInformationAccessOID (class in cryptogra-
phy.x509.oid), 77

SubjectKeyIdentifier (class in cryptography.x509),
59

SubjectPublicKeyInfo (cryptogra-
phy.hazmat.primitives.serialization.PublicFormat
attribute), 154

subjects (cryptography.x509.verification.VerifiedClient
attribute), 25

SUCCESSFUL (cryptogra-
phy.x509.ocsp.OCSPResponseStatus attribute),
22

superseded (cryptography.x509.ReasonFlags attribute),
65

SURNAME (cryptography.x509.oid.NameOID attribute), 73
symmetric cryptography, 322

T
tag (cryptography.hazmat.primitives.ciphers.AEADEncryptionContext

attribute), 198
tag (cryptography.hazmat.primitives.ciphers.modes.ModeWithAuthenticationTag

attribute), 200
tbs_certificate_bytes (cryptogra-

phy.x509.Certificate attribute), 34
tbs_certlist_bytes (cryptogra-

phy.x509.CertificateRevocationList attribute),
38

tbs_certrequest_bytes (cryptogra-
phy.x509.CertificateSigningRequest attribute),
43

tbs_precertificate_bytes (cryptogra-
phy.x509.Certificate attribute), 35

tbs_response_bytes (cryptogra-
phy.x509.ocsp.OCSPResponse attribute),
19

template_id (cryptogra-
phy.x509.MSCertificateTemplate attribute),

346 Index

Cryptography Documentation, Release 43.0.0.dev1

68
Text (cryptography.hazmat.primitives.serialization.pkcs7.PKCS7Options

attribute), 152
this_update (cryptography.x509.ocsp.OCSPResponse

attribute), 21
this_update (cryptogra-

phy.x509.ocsp.OCSPSingleResponse attribute),
24

time() (cryptography.x509.verification.PolicyBuilder
method), 27

TIME_STAMPING (cryptogra-
phy.x509.oid.ExtendedKeyUsageOID at-
tribute), 76

timestamp (cryptogra-
phy.x509.certificate_transparency.SignedCertificateTimestamp
attribute), 12

TITLE (cryptography.x509.oid.NameOID attribute), 73
TLS_FEATURE (cryptography.x509.oid.ExtensionOID at-

tribute), 79
TLSFeature (class in cryptography.x509), 57
TLSFeatureType (class in cryptography.x509), 57
TOTP (class in cryptogra-

phy.hazmat.primitives.twofactor.totp), 205
TraditionalOpenSSL (cryptogra-

phy.hazmat.primitives.serialization.PrivateFormat
attribute), 153

TripleDES (class in cryptogra-
phy.hazmat.decrepit.ciphers), 208

TripleDES (class in cryptogra-
phy.hazmat.primitives.ciphers.algorithms),
190

TRY_LATER (cryptogra-
phy.x509.ocsp.OCSPResponseStatus attribute),
23

tweak (cryptography.hazmat.primitives.ciphers.modes.ModeWithTweak
attribute), 200

type (cryptography.hazmat.primitives.serialization.SSHCertificate
attribute), 144

type (cryptography.x509.UnsupportedGeneralNameType
attribute), 81

type() (cryptography.hazmat.primitives.serialization.SSHCertificateBuilder
method), 146

type_id (cryptography.x509.OtherName attribute), 53

U
U-label, 322
UNAUTHORIZED (cryptogra-

phy.x509.ocsp.OCSPResponseStatus attribute),
23

UncompressedPoint (cryptogra-
phy.hazmat.primitives.serialization.PublicFormat
attribute), 155

UniformResourceIdentifier (class in cryptogra-
phy.x509), 52

UNKNOWN (cryptography.x509.ocsp.OCSPCertStatus at-
tribute), 23

unpadder() (cryptogra-
phy.hazmat.primitives.padding.ANSIX923
method), 202

unpadder() (cryptogra-
phy.hazmat.primitives.padding.PKCS7
method), 201

UnrecognizedExtension (class in cryptography.x509),
67

unsafe, 322
unspecified (cryptography.x509.ReasonFlags at-

tribute), 64
UNSTRUCTURED_NAME (cryptogra-

phy.x509.oid.AttributeOID attribute), 80
UNSTRUCTURED_NAME (cryptography.x509.oid.NameOID

attribute), 74
UnsupportedAlgorithm (class in cryptogra-

phy.exceptions), 207
UnsupportedGeneralNameType (class in cryptogra-

phy.x509), 81
update() (cryptography.hazmat.primitives.ciphers.CipherContext

method), 196
update() (cryptography.hazmat.primitives.cmac.CMAC

method), 178
update() (cryptography.hazmat.primitives.hashes.Hash

method), 183
update() (cryptography.hazmat.primitives.hashes.HashContext

method), 187
update() (cryptography.hazmat.primitives.hmac.HMAC

method), 180
update() (cryptography.hazmat.primitives.padding.PaddingContext

method), 202
update() (cryptography.hazmat.primitives.poly1305.Poly1305

method), 181
update_into() (cryptogra-

phy.hazmat.primitives.ciphers.CipherContext
method), 197

USER (cryptography.hazmat.primitives.serialization.SSHCertificateType
attribute), 145

USER_ID (cryptography.x509.oid.NameOID attribute), 73
UserNotice (class in cryptography.x509), 69

V
v1 (cryptography.x509.certificate_transparency.Version

attribute), 13
v1 (cryptography.x509.Version attribute), 50
v3 (cryptography.x509.Version attribute), 50
valid_after (cryptogra-

phy.hazmat.primitives.serialization.SSHCertificate
attribute), 144

valid_after() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificateBuilder
method), 147

Index 347

Cryptography Documentation, Release 43.0.0.dev1

valid_before (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificate
attribute), 144

valid_before() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificateBuilder
method), 147

valid_for_all_principals() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificateBuilder
method), 147

valid_principals (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificate
attribute), 144

valid_principals() (cryptogra-
phy.hazmat.primitives.serialization.SSHCertificateBuilder
method), 146

validate_for_algorithm() (cryptogra-
phy.hazmat.primitives.ciphers.modes.Mode
method), 199

validation_time (cryptogra-
phy.x509.verification.ClientVerifier attribute),
25

validation_time (cryptogra-
phy.x509.verification.ServerVerifier attribute),
26

value (cryptography.x509.Attribute attribute), 72
value (cryptography.x509.DirectoryName attribute), 52
value (cryptography.x509.DNSName attribute), 52
value (cryptography.x509.Extension attribute), 54
value (cryptography.x509.IPAddress attribute), 52
value (cryptography.x509.NameAttribute attribute), 50
value (cryptography.x509.OtherName attribute), 53
value (cryptography.x509.RegisteredID attribute), 52
value (cryptography.x509.RFC822Name attribute), 51
value (cryptography.x509.UniformResourceIdentifier at-

tribute), 52
value (cryptography.x509.UnrecognizedExtension

attribute), 67
VerificationError (class in cryptogra-

phy.x509.verification), 27
VerifiedClient (class in cryptogra-

phy.x509.verification), 25
verify() (cryptography.hazmat.primitives.asymmetric.dsa.DSAPublicKey

method), 137
verify() (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey

method), 110
verify() (cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PublicKey

method), 93
verify() (cryptography.hazmat.primitives.asymmetric.ed448.Ed448PublicKey

method), 98
verify() (cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey

method), 125
verify() (cryptography.hazmat.primitives.cmac.CMAC

method), 178
verify() (cryptography.hazmat.primitives.hmac.HMAC

method), 180
verify() (cryptography.hazmat.primitives.kdf.concatkdf.ConcatKDFHash

method), 164
verify() (cryptography.hazmat.primitives.kdf.concatkdf.ConcatKDFHMAC

method), 166
verify() (cryptography.hazmat.primitives.kdf.hkdf.HKDF

method), 167
verify() (cryptography.hazmat.primitives.kdf.hkdf.HKDFExpand

method), 169
verify() (cryptography.hazmat.primitives.kdf.kbkdf.KBKDFCMAC

method), 173
verify() (cryptography.hazmat.primitives.kdf.kbkdf.KBKDFHMAC

method), 171
verify() (cryptography.hazmat.primitives.kdf.KeyDerivationFunction

method), 175
verify() (cryptography.hazmat.primitives.kdf.pbkdf2.PBKDF2HMAC

method), 161
verify() (cryptography.hazmat.primitives.kdf.scrypt.Scrypt

method), 163
verify() (cryptography.hazmat.primitives.kdf.x963kdf.X963KDF

method), 175
verify() (cryptography.hazmat.primitives.poly1305.Poly1305

method), 181
verify() (cryptography.hazmat.primitives.twofactor.hotp.HOTP

method), 204
verify() (cryptography.hazmat.primitives.twofactor.totp.TOTP

method), 206
verify() (cryptography.x509.verification.ClientVerifier

method), 26
verify() (cryptography.x509.verification.ServerVerifier

method), 27
verify_cert_signature() (cryptogra-

phy.hazmat.primitives.serialization.SSHCertificate
method), 145

verify_directly_issued_by() (cryptogra-
phy.x509.Certificate method), 34

verify_tag() (cryptogra-
phy.hazmat.primitives.poly1305.Poly1305
class method), 182

Version (class in cryptography.x509), 49
Version (class in cryptogra-

phy.x509.certificate_transparency), 13
version (cryptography.x509.Certificate attribute), 30
version (cryptography.x509.certificate_transparency.SignedCertificateTimestamp

attribute), 12

X
x (cryptography.hazmat.primitives.asymmetric.dh.DHPrivateNumbers

attribute), 131
x (cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateNumbers

attribute), 135
x (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers

attribute), 104

348 Index

Cryptography Documentation, Release 43.0.0.dev1

X25519 (cryptography.x509.oid.PublicKeyAlgorithmOID
attribute), 80

X25519PrivateKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.x25519),
94

X25519PublicKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.x25519),
95

X448 (cryptography.x509.oid.PublicKeyAlgorithmOID
attribute), 80

X448PrivateKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.x448),
99

X448PublicKey (class in cryptogra-
phy.hazmat.primitives.asymmetric.x448),
100

X500_UNIQUE_IDENTIFIER (cryptogra-
phy.x509.oid.NameOID attribute), 73

X509_CERTIFICATE (cryptogra-
phy.x509.certificate_transparency.LogEntryType
attribute), 13

X962 (cryptography.hazmat.primitives.serialization.Encoding
attribute), 156

X963KDF (class in cryptogra-
phy.hazmat.primitives.kdf.x963kdf), 174

XTS (class in cryptogra-
phy.hazmat.primitives.ciphers.modes), 195

Y
y (cryptography.hazmat.primitives.asymmetric.dh.DHPublicNumbers

attribute), 131
y (cryptography.hazmat.primitives.asymmetric.dsa.DSAPublicNumbers

attribute), 134
y (cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers

attribute), 104

Index 349

	Installation
	Layout
	Fernet (symmetric encryption)
	Using passwords with Fernet
	Implementation
	Limitations

	X.509
	Tutorial
	Creating a Certificate Signing Request (CSR)
	Creating a self-signed certificate
	Determining Certificate or Certificate Signing Request Key Type

	Certificate Transparency
	OCSP
	Loading Requests
	Creating Requests
	Loading Responses
	Creating Responses
	Interfaces

	X.509 Verification
	X.509 Reference
	Loading Certificates
	Loading Certificate Revocation Lists
	Loading Certificate Signing Requests
	X.509 Certificate Object
	X.509 CRL (Certificate Revocation List) Object
	X.509 Certificate Builder
	X.509 CSR (Certificate Signing Request) Object
	X.509 Certificate Revocation List Builder
	X.509 Revoked Certificate Object
	X.509 Revoked Certificate Builder
	X.509 CSR (Certificate Signing Request) Builder Object
	General Name Classes
	X.509 Extensions
	Certificate Policies Classes
	CRL Entry Extensions
	OCSP Extensions
	X.509 Request Attributes
	Object Identifiers
	Helper Functions
	Exceptions

	Primitives
	Authenticated encryption
	Asymmetric algorithms
	Ed25519 signing
	Signing & Verification
	Key interfaces

	X25519 key exchange
	Exchange Algorithm
	Key interfaces

	Ed448 signing
	Signing & Verification
	Key interfaces

	X448 key exchange
	Exchange Algorithm
	Key interfaces

	Elliptic curve cryptography
	Elliptic Curve Signature Algorithms
	Elliptic Curve Key Exchange algorithm
	Elliptic Curves
	Key Interfaces
	Serialization
	Key loading
	Elliptic Curve Object Identifiers

	RSA
	Generation
	Key loading
	Key serialization
	Signing
	Verification
	Encryption
	Decryption
	Padding
	Mask generation functions

	Numbers
	Handling partial RSA private keys
	Key interfaces

	Diffie-Hellman key exchange
	Exchange Algorithm
	Group parameters
	Key interfaces
	Numbers

	DSA
	Generation
	Signing
	Verification
	Numbers
	Key interfaces

	Key Serialization
	Key dumping
	PEM
	DER
	OpenSSH Public Key
	OpenSSH Private Key
	OpenSSH Certificate
	SSH Certificate Builder
	PKCS12
	PKCS7
	Serialization Formats
	Serialization Encodings
	Serialization Encryption Types

	Asymmetric Utilities
	Common types

	Constant time functions
	Key derivation functions
	Variable cost algorithms
	PBKDF2
	Scrypt

	Fixed cost algorithms
	ConcatKDF
	HKDF
	KBKDF
	X963KDF

	Interface

	Key wrapping
	Exceptions

	Message authentication codes
	Cipher-based message authentication code (CMAC)
	Hash-based message authentication codes (HMAC)
	Poly1305

	Message digests (Hashing)
	SHA-2 family
	BLAKE2
	SHA-3 family
	SHA-1
	MD5
	SM3
	Interfaces

	Symmetric encryption
	Algorithms
	Weak ciphers

	Modes
	Insecure modes

	Interfaces
	Exceptions

	Symmetric Padding
	Two-factor authentication
	Throttling
	Re-synchronization of the counter
	Provisioning URI

	Exceptions
	Random number generation
	Decrepit cryptography
	Decrepit Symmetric algorithms

	Installation
	Supported platforms
	Building cryptography on Windows
	Building cryptography on Linux
	Alpine
	Debian/Ubuntu
	Fedora/RHEL/CentOS
	Building
	Using your own OpenSSL on Linux
	Static Wheels

	Building cryptography on macOS
	Rust

	Changelog
	43.0.0 - main
	42.0.5 - 2024-02-23
	42.0.4 - 2024-02-20
	42.0.3 - 2024-02-15
	42.0.2 - 2024-01-30
	42.0.1 - 2024-01-24
	42.0.0 - 2024-01-22
	41.0.7 - 2023-11-27
	41.0.6 - 2023-11-27
	41.0.5 - 2023-10-24
	41.0.4 - 2023-09-19
	41.0.3 - 2023-08-01
	41.0.2 - 2023-07-10
	41.0.1 - 2023-06-01
	41.0.0 - 2023-05-30
	40.0.2 - 2023-04-14
	40.0.1 - 2023-03-24
	40.0.0 - 2023-03-24
	39.0.2 - 2023-03-02
	39.0.1 - 2023-02-07
	39.0.0 - 2023-01-01
	38.0.4 - 2022-11-27
	38.0.3 - 2022-11-01
	38.0.2 - 2022-10-11 (YANKED)
	38.0.1 - 2022-09-07
	38.0.0 - 2022-09-06
	37.0.4 - 2022-07-05
	37.0.3 - 2022-06-21 (YANKED)
	37.0.2 - 2022-05-03
	37.0.1 - 2022-04-27
	37.0.0 - 2022-04-26
	36.0.2 - 2022-03-15
	36.0.1 - 2021-12-14
	36.0.0 - 2021-11-21
	35.0.0 - 2021-09-29
	3.4.8 - 2021-08-24
	3.4.7 - 2021-03-25
	3.4.6 - 2021-02-16
	3.4.5 - 2021-02-13
	3.4.4 - 2021-02-09
	3.4.3 - 2021-02-08
	3.4.2 - 2021-02-08
	3.4.1 - 2021-02-07
	3.4 - 2021-02-07
	3.3.2 - 2021-02-07
	3.3.1 - 2020-12-09
	3.3 - 2020-12-08
	3.2.1 - 2020-10-27
	3.2 - 2020-10-25
	3.1.1 - 2020-09-22
	3.1 - 2020-08-26
	3.0 - 2020-07-20
	2.9.2 - 2020-04-22
	2.9.1 - 2020-04-21
	2.9 - 2020-04-02
	2.8 - 2019-10-16
	2.7 - 2019-05-30
	2.6.1 - 2019-02-27
	2.6 - 2019-02-27
	2.5 - 2019-01-22
	2.4.2 - 2018-11-21
	2.4.1 - 2018-11-11
	2.4 - 2018-11-11
	2.3.1 - 2018-08-14
	2.3 - 2018-07-18
	2.2.2 - 2018-03-27
	2.2.1 - 2018-03-20
	2.2 - 2018-03-19
	2.1.4 - 2017-11-29
	2.1.3 - 2017-11-02
	2.1.2 - 2017-10-24
	2.1.1 - 2017-10-12
	2.1 - 2017-10-11
	2.0.3 - 2017-08-03
	2.0.2 - 2017-07-27
	2.0.1 - 2017-07-26
	2.0 - 2017-07-17
	1.9 - 2017-05-29
	1.8.2 - 2017-05-26
	1.8.1 - 2017-03-10
	1.8 - 2017-03-09
	1.7.2 - 2017-01-27
	1.7.1 - 2016-12-13
	1.7 - 2016-12-12
	1.6 - 2016-11-22
	1.5.3 - 2016-11-05
	1.5.2 - 2016-09-26
	1.5.1 - 2016-09-22
	1.5 - 2016-08-26
	1.4 - 2016-06-04
	1.3.4 - 2016-06-03
	1.3.3 - 2016-06-02
	1.3.2 - 2016-05-04
	1.3.1 - 2016-03-21
	1.3 - 2016-03-18
	1.2.3 - 2016-03-01
	1.2.2 - 2016-01-29
	1.2.1 - 2016-01-08
	1.2 - 2016-01-08
	1.1.2 - 2015-12-10
	1.1.1 - 2015-11-19
	1.1 - 2015-10-28
	1.0.2 - 2015-09-27
	1.0.1 - 2015-09-05
	1.0 - 2015-08-12
	0.9.3 - 2015-07-09
	0.9.2 - 2015-07-04
	0.9.1 - 2015-06-06
	0.9 - 2015-05-13
	0.8.2 - 2015-04-10
	0.8.1 - 2015-03-20
	0.8 - 2015-03-08
	0.7.2 - 2015-01-16
	0.7.1 - 2014-12-28
	0.7 - 2014-12-17
	0.6.1 - 2014-10-15
	0.6 - 2014-09-29
	0.5.4 - 2014-08-20
	0.5.3 - 2014-08-06
	0.5.2 - 2014-07-09
	0.5.1 - 2014-07-07
	0.5 - 2014-07-07
	0.4 - 2014-05-03
	0.3 - 2014-03-27
	0.2.2 - 2014-03-03
	0.2.1 - 2014-02-22
	0.2 - 2014-02-20
	0.1 - 2014-01-08

	Frequently asked questions
	What issues can you help with in your issue tracker?
	I cannot suppress the deprecation warning that cryptography emits on import
	cryptography failed to install!
	How does cryptography compare to NaCl (Networking and Cryptography Library)?
	Why use cryptography?
	Why does cryptography require Rust?
	cryptography raised an InternalError and I’m not sure what to do?
	Installing cryptography with OpenSSL 0.9.8, 1.0.0, 1.0.1, 1.0.2, 1.1.0 fails
	Installing cryptography fails with error: Can not find Rust compiler
	I’m getting errors installing or importing cryptography on AWS Lambda
	Why are there no wheels for my Python3.x version?
	Why can’t I import my PEM file?
	What happened to the backend argument?
	Will you upload wheels for my non-x86 non-ARM64 CPU architecture?

	Development
	Getting started
	Development dependencies
	OpenSSL on macOS

	Running tests

	Submitting patches
	Code
	API considerations
	C bindings

	Tests
	Documentation

	Reviewing and merging patches
	Intent
	Architecture
	Implementation
	Grammar and style
	Merge requirements

	Test vectors
	Sources
	Project Wycheproof
	Asymmetric ciphers
	Custom asymmetric vectors
	SECP256K1 vector creation
	Creation
	Verification
	RSA OAEP SHA2 vector creation
	Creation
	Verification
	Using the Verifier

	Key exchange
	X.509
	Custom X.509 Vectors
	Custom X.509 Request Vectors
	Custom X.509 Certificate Revocation List Vectors
	X.509 OCSP Test Vectors
	Custom X.509 OCSP Test Vectors
	Custom PKCS12 Test Vectors
	Custom PKCS7 Test Vectors
	Custom OpenSSH Test Vectors
	Custom OpenSSH Certificate Test Vectors
	Hashes
	HMAC
	Key derivation functions
	Key wrapping
	Recipes
	Symmetric ciphers
	Two factor authentication
	CMAC
	Poly1305

	Creating test vectors
	Created Vectors
	AES-GCM-SIV vector creation
	Creation
	Verification
	ARC4 vector creation
	Creation
	Verification
	CAST5 vector creation
	Creation
	Verification
	ChaCha20 vector creation
	Creation
	Verification
	IDEA vector creation
	Creation
	Verification
	SEED vector creation
	Creation
	Verification
	HKDF vector creation
	Creation
	Verification
	RC2 vector creation
	Creation/Verification

	C bindings
	Style guide
	Adding constant, types, functions…
	Caveats

	Use of OpenSSL
	Legacy provider in OpenSSL 3.x

	Security
	Known vulnerabilities
	Infrastructure
	What is a security issue?
	Reporting a security issue
	Supported Versions
	New releases for OpenSSL updates
	Disclosure Process

	Known security limitations
	Secure memory wiping
	RSA PKCS1 v1.5 constant time decryption

	API stability
	What does this policy cover?
	What does “stable” mean?
	What doesn’t this policy cover?
	Security

	Versioning
	Version 35.0.0+
	Deprecation
	Previous Scheme

	Doing a release
	Security Releases
	Verifying OpenSSL version
	Upgrading OpenSSL
	Bumping the version number
	Performing the release
	Verifying the release
	Post-release tasks

	Community
	Glossary

	Python Module Index
	Index

